簡易檢索 / 詳目顯示

研究生: 王靖綺
Wang, Ching-Chi
論文名稱: 探討銀/四氧化三鈷修飾泡沫鎳在甲醇電氧化催化之應用
Silver and cobalt tetraoxide modified foam-nickel for electrocatalytic oxidation of methanol
指導教授: 黃守仁
Whang, Thuo-Jen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 93
中文關鍵詞: 四氧化三鈷泡沫鎳電沉積甲醇電氧化
外文關鍵詞: electrodeposition, silver, nickel foam, cobalt tetraoxide, methanol electrooxidation
相關次數: 點閱:51下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用電化學沉積以簡單且成本低的方式製備銀/四氧化三鈷薄膜來修飾泡沫鎳,在泡沫鎳基板上利用定電位電沉積製備四氧化三鈷薄膜,再將銀電沉積到四氧化三鈷薄膜上,成功製備出銀/四氧化三鈷修飾的泡沫鎳電極,並應用於甲醇電氧化反應。
    透過XRD、SEM、與EDS等儀器對銀/四氧化三鈷薄膜進行製備條件最佳化探討,針對前驅液濃度、電沉積時間、電沉積電位、薄膜退火時間等參數條件進行研究,接著再利用循環伏安法進行甲醇電氧化測試,尋找出最佳的參數條件。
    由實驗結果得知在0.05 M Co(NO3)2和0.05 M NaNO3所組成電解液中,使用定電位-1.0 V進行電沉積900秒,鍛燒60分鐘,四氧化三鈷薄膜晶型結構較完整,其片狀結構均勻,具有較多孔洞,比表面積大,有助於甲醇電氧化反應,為了增加導電度和催化活性,在5 mM AgNO3和0.1 M KNO3的混合溶液中以-0.4 V電沉積300秒,利用銀修飾四氧化三鈷薄膜,最後置於50 °C烘箱中乾燥15小時,從SEM圖中可觀察到銀均勻沉積在四氧化三鈷薄膜上,透過乾燥處理提高結晶性。將此最佳化條件所製備之銀/四氧化三鈷修飾的泡沫鎳電極以0.1 M KOH與0.5 M CH3OH之鹼性甲醇水溶液為催化原料,KOH為鹼性來源,在掃描區間-1.0 V至1.0 V,掃描速率為50 mVs-1,進行甲醇電氧化循環伏安法分析,在掃描電位為1.0 V時,電流密度可高達195.1 mA/cm2。

    In this work, we employed an electrochemical deposition technique to prepare Ag-Co3O4 thin films in a simple and low-cost way on nickel foam for modifying electrodes. The Co3O4 thin film was initially electrodeposited on the nickel foam substrate using chronoamperometric deposition method, followed by the deposition of Ag onto the Co3O4 film. The resulting Ag-Co3O4 /Ni foam electrode was successfully fabricated and applied to methanol electrooxidation. The optimization of the preparation conditions for the Ag-Co3O4 thin films was investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS). Parameters such as precursor solution concentration, deposition time, deposition potential, and annealing time were studied. The optimized conditions were further assessed using cyclic voltammetry (CV) for methanol electrooxidation to determine the most favorable parameter set. The experimental results revealed that in an electrolyte composed of 0.05 M Co(NO3)2 and 0.05 M NaNO3, a deposition time of 900 s at -1.0 V, followed by a 60-minute annealing process, yielded Co3O4 thin films with improved crystallinity, uniform flake-like structure, enhanced porosity, and larger surface area, all of which are beneficial for methanol electrooxidation. To enhance conductivity and catalytic activity, Ag deposition was performed at -0.4 V for 300 s in a mixed solution of 5 mM AgNO3 and 0.1 M KNO3, resulting in Ag-modified Co3O4 films. Finally, the prepared Ag-Co3O4 /Ni foam electrode was dried in an oven at 50 °C for 15 hours to enhance crystallinity. The SEM images confirmed the uniform deposition of Ag on the Co3O4 thin film, and the drying process improved the crystalline properties. The Ag-Co3O4 /Ni foam electrode prepared under the optimized conditions exhibited a high current density of 195.1 mA/cm2 at a scan potential of 1.0 V in a 0.1 M KOH and 0.5 M CH3OH alkaline methanol solution.

    摘要 I 誌謝 XIII 目錄 XIV 圖目錄 XVIII 表目錄 XXII 第一章 緒論 1 1-1 燃料電池 1 1-1-1 燃料電池的發展 1 1-1-2 燃料電池的運作原理 3 1-1-3 燃料電池的種類 3 1-1-4 燃料電池的優點 5 1-2 直接甲醇燃料電池(DMFCs) 7 1-2-1 介紹 7 1-2-2 主要構造 7 1-2-3 發電原理 9 1-2-4 極化現象 10 1-2-5 甲醇氧化機制 12 1-3 研究動機與目的 14 第二章 實驗原理 16 2-1 電化學方法 16 2-1-1 電化學方法原理 16 2-1-2 計時電流法(Chronoamperometry,CA) 19 2-1-3 循環伏安法(Cyclic voltammetry,CV) 20 2-2 儀器原理 22 2-2-1 X-射線繞射分析儀(X-ray diffractometer,XRD) 22 2-2-2 能量分散式光譜分析儀(Energy Dispersive Spectroscopy,EDS) 23 2-2-3 掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 24 2-3 電催化原理 25 2-3-1 電催化反應介紹 25 2-3-2 電催化甲醇反應 26 第三章 實驗方法與步驟 28 3-1 實驗流程圖 28 3-2 實驗儀器 29 3-3 實驗藥品與材料 30 3-4 實驗方法 31 3-4-1 銀修飾四氧化三鈷薄膜泡沫鎳電極 (Ag-Co3O4/Ni foam) 製備 31 3-4-2 甲醇電氧化反應分析 33 第四章 結果與討論 34 4-1 硝酸鈷濃度對Ag-Co3O4/Ni foam之影響 34 4-1-1 表面形貌分析 34 4-1-2 晶型結構分析 35 4-1-3 元素分析 36 4-1-4 甲醇電氧化效能分析 38 4-2 Co3O4薄膜沉積電位對Ag-Co3O4/Ni foam之影響 40 4-2-1 表面形貌分析 40 4-2-2 晶型結構分析 42 4-2-3 元素分析 43 4-2-4 甲醇電氧化效能分析 45 4-3 Co3O4薄膜沉積時間對Ag-Co3O4/Ni foam之影響 47 4-3-1 表面形貌分析 47 4-3-2 晶型結構分析 49 4-3-3 元素分析 50 4-3-4 甲醇電氧化效能分析 51 4-4 Co3O4薄膜鍛燒時間對Ag-Co3O4/Ni foam之影響 53 4-4-1 表面形貌分析 53 4-4-2 晶型結構分析 55 4-4-3 元素分析 56 4-4-4 甲醇電氧化效能分析 57 4-5 硝酸銀濃度對Ag-Co3O4/Ni foam之影響 59 4-5-1 表面形貌分析 59 4-5-2 晶型結構分析 61 4-5-3 元素分析 62 4-5-4 甲醇電氧化效能分析 63 4-6 Ag電沉積電位對Ag-Co3O4/Ni foam之影響 65 4-6-1 表面形貌分析 65 4-6-2 晶型結構分析 68 4-6-3 元素分析 69 4-6-4 甲醇電氧化效能分析 70 4-7 Ag電沉積時間對Ag-Co3O4/Ni foam之影響 72 4-7-1 表面形貌分析 72 4-7-2 晶型結構分析 74 4-7-3 元素分析 75 4-7-4 甲醇電氧化效能分析 76 4-8 Ag-Co3O4薄膜乾燥方法對Ag-Co3O4/Ni foam之影響 78 4-8-1 表面形貌分析 78 4-8-2 晶型結構分析 79 4-8-3 甲醇電氧化效能分析 80 4-9 最佳化條件製備Ag-Co3O4/Ni foam電極結構鑑定 82 4-9-1 Ag-Co3O4/Ni foam表面形貌分析 82 4-9-2 Ag-Co3O4/Ni foam晶型結構分析 84 4-10 甲醇電氧化效能探討 85 4-10-1 最佳化條件製備Ag-Co3O4/Ni foam甲醇電氧化效能 85 4-10-2 不同材料電極甲醇電氧化效能比較 86 4-10-3 最佳化條件製備Ag-Co3O4/Ni foam之穩定性檢測 87 4-10-4 Ag-Co3O4/Ni foam與非貴金屬電極材料之甲醇電氧化效能比較 88 第五章 結論 89 參考文獻 91

    1. R. Quadrelli and S. Peterson, Energy Policy 2007, 35, 5938-5952.
    2. M. S. Alias, S. K. Kamarudin, A. M. Zainoodin and M. S. Masdar, International Journal of Hydrogen Energy 2020, 45, 19620-19641.
    3. U. Lucia, Renewable and Sustainable Energy Reviews 2014, 30, 164-169.
    4. O. Z. Sharaf and M. F. Orhan, Renewable and Sustainable Energy Reviews 2014, 32, 810-853.
    5. W. Grove, Philosophical Magazine 2012, 92, 3753-3756.
    6. M. Gasik in 1 - Introduction: materials challenges in fuel cells, Woodhead Publishing, 2008, pp. 1-5.
    7. L. Carrette, K. A. Friedrich and U. Stimming, Fuel Cells 2001, 1, 5-39.
    8. S. K. Kamarudin, F. Achmad and W. R. W. Daud, International Journal of Hydrogen Energy 2009, 34, 6902-6916.
    9. N. Hashim, S. K. Kamarudin and W. R. W. Daud, International Journal of Hydrogen Energy 2009, 34, 8263-8269.
    10. A. S. Aricò, P. Cretı̀, V. Baglio, E. Modica and V. Antonucci, Journal of Power Sources 2000, 91, 202-209.
    11. A. C. Fărcaş and P. Dobra, Procedia Technology 2014, 12, 42-49.
    12. M. B. Karimi, F. Mohammadi and K. Hooshyari, International Journal of Hydrogen Energy 2019, 44, 28919-28938.
    13. A. Hamnett, Catalysis Today 1997, 38, 445-457.
    14. W. Vielstich, Journal of the Brazilian Chemical Society 2003, 14, 503-509.
    15. J. Zhongqing and J. Zhong-Jie in Carbon Nanotubes Supported Metal Nanoparticles for the Applications in Proton Exchange Membrane Fuel Cells (PEMFCs) 2011, Ch. 24.
    16. J. Larminie, A. Dicks and M. S. McDonald, Fuel cell systems explained 2003, 2, 207-225.
    17. P. Justin, P. Hari Krishna Charan and G. Ranga Rao, Applied Catalysis B: Environmental 2010, 100, 510-515.
    18. P. Justin and G. Ranga Rao, International Journal of Hydrogen Energy 2011, 36, 5875-5884.
    19. S. K. Meher and G. R. Rao, ACS Catalysis 2012, 2, 2795-2809.
    20. E. Umeshbabu, G. Rajeshkhanna, P. Justin and G. R. Rao, Materials Chemistry and Physics 2015, 165, 235-244.
    21. W. Wang, Q. Chu, Y. Zhang, W. Zhu, X. Wang and X. Liu, New Journal of Chemistry 2015, 39, 6491-6497.
    22. J. Cheng, H. Yan, Y. Lu, K. Qiu, X. Hou, J. Xu, L. Han, X. Liu, J.-K. Kim and Y. Luo, Journal of Materials Chemistry A 2015, 3, 9769-9776.
    23. Q. Luo, M. Peng, X. Sun and A. M. Asiri, Catalysis Science & Technology 2016, 6, 1157-1161.
    24. M. Roy, S. Ghosh and M. K. Naskar, Physical Chemistry Chemical Physics 2015, 17, 10160-10169.
    25. Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier and H. Dai, Nature materials 2011, 10, 780-786.
    26. Y. Ding, Y. Wang, L. Su, M. Bellagamba, H. Zhang and Y. Lei, Biosensors and Bioelectronics 2010, 26, 542-548.
    27. S. K. Meher and G. R. Rao, The Journal of Physical Chemistry C 2011, 115, 15646-15654.
    28. G. Rajeshkhanna, E. Umeshbabu and G. Ranga Rao, Journal of Colloid and Interface Science 2017, 487, 20-30.
    29. K. Wang, Y. Cao, J. Hu, Y. Li, J. Xie and D. Jia, ACS Applied Materials & Interfaces 2017, 9, 16128-16137.
    30. C. Yuan, L. Yang, L. Hou, L. Shen, X. Zhang and X. W. D. Lou, Energy & Environmental Science 2012, 5, 7883-7887.
    31. X. Zhang, Y. Zhao and C. Xu, Nanoscale 2014, 6, 3638-3646.
    32. X. Yang, Z. Lin, J. Zheng, Y. Huang, B. Chen, Y. Mai and X. Feng, Nanoscale 2016, 8, 8650-8657.
    33. Y. Jiang, J. Chen, J. Zhang, A. Li, Y. Zeng, F. Zhou, G. Wang and R. Wang, RSC Advances 2016, 6, 13207-13216.
    34. L. Li, M. Chen, G. Huang, N. Yang, L. Zhang, H. Wang, Y. Liu, W. Wang and J. Gao, Journal of Power Sources 2014, 263, 13-21.
    35. K. Han, P. Miao, H. Tong, T. Liu, W. Cheng, X. Zhu and Y. Tang, Applied Physics Letters 2014, 104,053101,p1-p4.
    36. W. Lian, S. Liu, J. Yu, J. Li, M. Cui, W. Xu and J. Huang, Biosensors and Bioelectronics 2013, 44, 70-76.
    37. Y. Li, P. Zhang, Z. Ouyang, M. Zhang, Z. Lin, J. Li, Z. Su and G. Wei, Advanced Functional Materials 2016, 26, 2122-2134.
    38. Y. Yu, Y. Cheng, M. Guo, C. Li and J. Hu, RSC advances 2017, 7, 39539-39545.
    39. A. J. Bard and L. R. Faulkner, Electrochemical methods 2001, 2, 580-632.
    40. B. K. Das and A. Shyam, Journal of Physics: Conference Series 2010, p. 012136.
    41. I. J. Suarez, T. F. Otero and M. Marquez, The Journal of Physical Chemistry B 2005, 109, 1723-1729.
    42. C. Bala, L. Rotariu, C. Ionescu and P. Svasta, 2009 15th International Symposium for Design and Technology of Electronics Packages (SIITME) 2009, 295-300.
    43. D. C. Harris, Analytical Chemistry 2010, 82, 7865-7870.
    44. L. Elton and D. F. Jackson, American Journal of Physics 1966, 34, 1036-1038.
    45. P. Burkhardt, M. Grønborg, K. McDonald, T. Sulur, Q. Wang and N. King, Molecular Biology and Evolution 2014, 31, 2342-2355.
    46. M. A. Ivie in Wet chemical synthesis strategies to develop aluminum manganese nanoparticles for high density magnetic recording, University of Alabama Libraries, 2010.
    47. R. F. W. Pease in Significant Advances in Scanning Electron Microscopes 2008, 150, 53-86.
    48. 王俊傑, 黃士杰, 李穎弦, 楊汶釧 and 林修正, 化工 2009, 56, 3-16.
    49. F. Yu, Z. Qu, X. Zhang, Q. Fu and Y. Wang, Journal of Energy Chemistry 2013, 22, 845-852.
    50. E. Antolini in Platinum Alloys as Anode Catalysts for Direct Methanol Fuel Cells, 2009, 227-255.
    51. M. Hogarth and T. Ralph, Platinum Metals Review 2002, 46, 146-164.
    52. G. Rajeshkhanna and G. Ranga Rao, International Journal of Hydrogen Energy 2018, 43, 4706-4715.
    53. L. Gu, L. Qian, Y. Lei, Y. Wang, J. Li, H. Yuan and D. Xiao, Journal of Power Sources 2014, 261, 317-323.
    54. H. Heli and H. Yadegari, Electrochimica Acta 2010, 55, 2139-2148.
    55. N. Spinner and W. E. Mustain, Electrochimica Acta 2011, 56, 5656-5666.
    56. M. Asgari, M. G. Maragheh, R. Davarkhah and E. Lohrasbi, Journal of the Electrochemical Society 2011, 158, K225-K229.
    57. R. Ding, L. Qi, M. Jia and H. Wang, Catalysis Science & Technology 2013, 3, 3207-3215.
    58. M. Jafarian, M. G. Mahjani, H. Heli, F. Gobal, H. Khajehsharifi and M. H. Hamedi, Electrochimica Acta 2003, 48, 3423-3429.
    59. B. Bai and J. Li, ACS Catalysis 2014, 4, 2753-2762.
    60. X.-Y. Yu, X.-Z. Yao, T. Luo, Y. Jia, J.-H. Liu and X.-J. Huang, ACS applied materials & interfaces 2014, 6, 3689-3695.
    61. H. S. Jadhav, A. Roy, W.-J. Chung and J. G. Seo, New Journal of Chemistry 2017, 41, 15058-15063.
    62. P. R. Jothi, S. Kannan and G. Velayutham, Journal of Power Sources 2015, 277, 350-359.
    63. P. Manivasakan, P. Ramasamy and J. Kim, Nanoscale 2014, 6, 9665-9672.
    64. Y. Y. Tong, C. D. Gu, J. L. Zhang, H. Tang, X. L. Wang and J. P. Tu, International Journal of Hydrogen Energy 2016, 41, 6342-6352.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE