簡易檢索 / 詳目顯示

研究生: 林采樺
Lin, Tsai-Hua
論文名稱: 具改良型感應耦合結構之非接觸式條帶狀供電軌道系統
Contactless Strip-Type Power Track System with Improved Inductively Coupled Structure
指導教授: 李嘉猷
Lee, Jia-You
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 75
中文關鍵詞: 非接觸式感應供電傳輸電能拾取器條帶狀感應供電軌道
外文關鍵詞: Contactless power transmission, Power pickup, Strip-type inductive power track
相關次數: 點閱:85下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在針對自動化工廠之生產線搬運電動車用非接觸式條帶狀感應供電軌道系統,進行其感應耦合結構之改良。文中首先分析具面發射磁場的條帶狀感應供電軌道,並考量實際應用上之限制,利用磁場模擬和等效磁路模型來設計與分析,以選擇出最合適的電能拾取器鐵芯結構,有效提升感應耦合結構的耦合係數,並且提出新型條帶狀感應供電軌道的繞製方式來改善軌道磁場之均勻度。本文並考量所提系統的感應耦合結構與應用特性,選擇合適的諧振電路拓撲,並根據系統規格研製長2 m軌道和5 cm電能拾取器與初次級側電路。最後經由實驗量測,最大輸出功率400 W時其效率為65.7%,而於輸出功率186 W時可達最大傳輸效率70.34%。

    The aim of this thesis is an attempt to improve the inductively coupled structure for the contactless strip-type inductive power track system. Firstly, with magnetic field simulation and magnetic equivalent circuit model, an appropriate core structure is designed for the strip-type inductive power track which can emit a magnetic field from surface. Next, a distinct means of winding the circular coils is designed to smooth the magnetic flux density on the power track. Therefore, the proposed inductively coupled structure can effectively ameliorate the coupling coefficient of the structure. Then, the inductively coupled structure with a 2-m long track and a 5-cm long pickup and related circuits are implemented based on the feature of this system. Finally, in accordance with the experimental results, the maximum output power of overall system is 400 W with transfer efficiency of 65.7%, and the maximum transmission efficiency is measured to be 70.34% at an output power of 186 W.

    摘要 I Abstract II Acknowledgements III Contents IV List of Table VI List of Figures VII Chapter 1 Introduction 1 1-1 General background information and literature review 1 1-2 Motivation and purpose of research 3 1-3 Methodology 3 1-4 Overview 5 Chapter 2 Contactless Inductive Power Transmission Techniques 6 2-1 Electromagnetic theory 6 2-2 Equivalent circuit model of inductively coupled structure 9 2-3 Non-ideal characteristics of current-carrying wires 12 2-3-1 Skin effect 12 2-3-2 Proximity effect 14 Chapter 3 Analysis of Inductively Coupled Structure and Resonant Circuits 15 3-1 Analysis of inductively coupled structure 15 3-1-1 Design and analysis of the power pickup 16 3-1-2 Magnetic equivalent circuit modeling of the pickup 23 3-1-3 Design and analysis of the strip-type inductive power track 36 3-2 Analysis of resonant circuits 40 3-2-1 Resonant circuit of the primary side 42 3-2-2 Analysis of resonant topology 43 Chapter 4 Design of Contactless Strip-Type Inductive Power Track System 47 4-1 Framework of overall system 47 4-2 Primary circuits 49 4-3 Design of inductively coupled structure 51 4-4 Secondary circuits 55 4-5 Design process for the system 56 Chapter 5 Simulated and Experimental Results 58 5-1 System specifications 58 5-2 Simulated results 60 5-3 Experimental results 63 Chapter 6 Conclusions and Future Work 69 6-1 Conclusions 69 6-2 Recommendations for future work 70 Reference 71

    [1] “IPT charge for electric vehicles,” Conductix-Wampfler delachaux group, Germany, KAT9200-0001-E, 2009.
    [2] Kamen, “Contactless Power System,” Vahle Corp., Germany, Nr. 9d/EN, Nov. 2008.
    [3] Schoneberger, “Primove contactless and catenary-free operation,” Bombardier Inc., 10832/SYS/09- 2010/en, Canada, 2010.
    [4] “非接觸供電,”AMIDOF Corp., Taiwan, NCPT, 2005.
    [5] “Corporate profile,” Daifuku Corp., Japan, CP13E, 2013.
    [6] W. Zhang, S. C. Wong, C. K. Tse, and Q. Chen, “Design for efficiency optimization and voltage controllability of series-series compensated inductive power transfer systems,” IEEE Trans. Power Electron., vol. 29, no. 1, pp. 191–200, Jan. 2014.
    [7] W. Zhang, S. C. Wong, C. K. Tse, and Q. Chen, “Analysis and comparison of secondary series- and parallel-compensated inductive power transfer systems operating for optimal efficiency and load-independent voltage-transfer ratio,” IEEE Trans. Power Electron., vol. 29, no. 6, pp. 2979–2990, June 2014.
    [8] J. Hou, Q. Chen, X. Ren, X. Ruan, S. C. Wong, and C. K. Tse, “Precise characteristics analysis of series series-parallel compensated contactless resonant converter,” IEEE J. Emerging Select. Topics Power Electron., vol. PP, no. 99, p. 1, May 2014.
    [9] W. Zhang, S. C. Wong, C. K. Tse, and Q. Chen, “An optimized track length in roadway inductive power transfer systems,” IEEE J. Emerging Select. Topics Power Electron., vol. 2, no. 3, pp. 598–608, Sep 2014.
    [10] J. P. C. Smeets, T. T. Overboom, J. W. Jansen, and E. A. Lomonova, “Comparison of position-independent contactless energy transfer systems,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 2059–2067, Apr. 2013.
    [11] J. P. C. Smeets, T. T. Overboom, J. W. Jansen, and E. A. Lomonova, “Modeling framework for contactless energy transfer systems for linear actuators,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 391–399, Jan. 2013.
    [12] J. P. C. Smeets, T. T. Overboom, J. W. Jansen, and E. A. Lomonova, “Mode-matching technique applied to three-dimensional magnetic field modeling,” IEEE Trans. Magn., vol. 48, no. 11, pp. 3383–3386, Nov. 2012.
    [13] H. Matsumoto, Y. Neba, H. Iura, D. Tsutsumi, K. Ishizaka, and R. Itoh, “Trifoliate three-phase contactless power transformer in case of winding-alignment,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 53–62, Jan. 2014.
    [14] H. Matsumoto, Y. Neba, K. Ishizaka, and R. Itoh, “Comparison of characteristics on planar contactless power transfer systems,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 2980–2993, June 2012.
    [15] G. A. Covic and J. T. Boys, “Inductive power transfer,” in Proc. IEEE, vol. 101, no. 6, pp. 1276–1289, Jan. 2013.
    [16] C. Liu, A. P. Hu, G. A. Covic, and N. K. C. Nair, “Comparative study of CCPT systems with two different inductor tuning positions,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 294–306, Jan. 2012.
    [17] C. S. Wang, G. A. Covic, and O. H. Stielau, “Investigating an LCL load resonant inverter for inductive power transfer applications,” IEEE Trans. Power Electron., vol. 19, no. 4, pp. 995–1002, July 2004.
    [18] C. Y. Huang, J. T. Boys, and G. A. Covic, “LCL pickup circulating current controller for inductive power transfer systems,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 2081–2093, Apr. 2013.
    [19] S. Raabe and G. A. Covic, “Practical design considerations for contactless power transfer quadrature pick-ups,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 400–409, Jan. 2013.
    [20] J. E. James, D. J. Robertson, and G. A. Covic, “Improved AC pickups for IPT systems,” IEEE Trans. Power Electron., vol. 29, no. 12, pp. 6361–6374, Dec. 2014.
    [21] H. H. Wu, G. A. Covic, J. T. Boys, and D. J. Robertson, “A series-tuned inductive-power-transfer pickup with a controllable AC-voltage output,” IEEE Trans. Power Electron., vol. 26, no. 1, pp. 98–109, Jan. 2011.
    [22] H. L. Li, A. P. Hu, and G. A. Covic, “A direct AC-AC converter for inductive power-transfer systems,” IEEE Trans. Power Electron., vol. 27, no. 2, pp. 661–668, Feb. 2012.
    [23] J. U. W. Hsu, A. P. Hu, and A. Swain, “Fuzzy logic-based directional full-range tuning control of wireless power pickups,” IEEE Trans. Power Electron., vol. 5, no. 6, pp. 773–781, July 2012.
    [24] H. Hao, G. A. Covic, and J. T. Boys, “A parallel topology for inductive power transfer power supplies,” IEEE Trans. Power Electron., vol. 29, no. 3, pp. 1140–1151, Mar. 2014.
    [25] L. Chen, J. T. Boys, and G. A. Covic, “Power management for multiple-pickup IPT systems in materials handling applications,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 163-176, Mar. 2015.
    [26] J. Huh, S. W. Lee, W. Y. Lee, G. H. Cho, and C. T. Rim, “Narrow-width inductive power transfer system for online electrical vehicles,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3666–3679, Dec. 2011.
    [27] W. Y. Lee, J. Huh, S. Y. Choi, X. V. Thai, J. H. Kim, E. A. Al-Ammar, M. A. El-Kady, and C. T. Rim, “Finite-width magnetic mirror models of mono and dual coils for wireless electric vehicles,” IEEE Trans. Power Electron., vol. 28, no. 3, pp. 1413–1428, Mar. 2013.
    [28] S. Choi, J. Huh, W. Y. Lee, S. W. Lee, and C. T. Rim, “New cross-segmented power supply rails for roadway-powered electric vehicles,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5832–5841, Dec. 2013.
    [29] C. Park, S. Lee, G. H. Cho, S. Y. Choi, and C. T. Rim, “Two-dimensional inductive power transfer system for mobile robots using evenly displaced multiple pickups,” IEEE Trans. Ind. Appl., vol. 50, no. 1, pp. 558–565, Jan. 2014.
    [30] S. Y. Choi, J. Huh, W. Y. Lee, and C. T. Rim, “Asymmetric coil sets for wireless stationary EV chargers with large lateral tolerance by dominant field analysis,” IEEE Trans. Power Electron., vol. 29, no. 12, pp. 6406–6420, Dec. 2014.
    [31] S. Y. Choi, B. W. Gu, S. W. Lee, W. Y. Lee, J. Huh, and C. T. Rim, “Generalized active EMF cancel methods for wireless electric vehicles,” IEEE Trans. Power Electron., vol. 29, no. 11, pp. 5770–5783, Nov. 2014.
    [32] C. Park, S. Lee, G. H. Cho, and C. T. Rim, “Innovative 5-m-off-distance inductive power transfer systems with optimally shaped dipole coils,” IEEE Trans. Power Electron., vol. 30, no. 2, pp. 817–827, Feb. 2015.
    [33] S. Y. Choi, B. W. Gu, S. Y. Jeong, and C. T. Rim, “Advances in wireless power transfer systems for roadway-powered electric vehicles,” IEEE J. Emerging Select. Topics Power Electron., vol. 3, no. 1, pp. 18-36, Aug. 2014.
    [34] C. T. Rim, “The development and deployment of on-line electric vehicles (OLEV),” in Proc. IEEE ECCE, 2013.
    [35] S. Y. Choi, S. W. Lee, E. S. Lee, S. Y. Jeong, B. W. Gu, C. T. Rim, “Self-decoupled dual pick-up coils with large lateral tolerance for roadway powered electric vehicles,” in Proc. IPEC, 2014, pp.1103–1108.
    [36] J. H. Choi, S. K. Yeo, S. Park, J. S. Lee, and G. H. Cho, “Resonant regulating rectifiers (3R) operating for 6.78 MHz resonant wireless power transfer (RWPT),” IEEE J. Solid-State Circuits, vol. 48, no. 12, pp. 2989–3001, Dec. 2013.
    [37] S. Ahn and J. Kim, “Magnetic field design for high efficient and low EMF wireless power transfer in on-line electric vehicle,” in Proc. EUCAP, 2011, pp. 3979–3982.
    [38] F. F. A. van der Pijl, M. Castilla, and P. Bauer, “Adaptive sliding-mode control for a multiple-user inductive power transfer system without need for communication,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 271–279, Jan. 2013.
    [39] F. F. A. van der Pijl, P. Bauer, and M. Castilla, “Control method for wireless inductive energy transfer systems with relatively large air gap,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 382–390, Jan. 2013.
    [40] S. Chopra and P. Bauer, “Driving range extension of EV with on-road contactless power transfer-a case study,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 329–338, Jan. 2013.
    [41] J. Y. Lee, H. Y. Shen, and K. C. Chan, “Design and implementation of removable and closed-shape dual ring pickup for contactless linear inductive power track system,” IEEE Trans. Ind. Appl., vol. 50, no. 6, pp. 4036–4046, Nov./Dec. 2014.
    [42] 張宇誠,具封閉型耦合結構非接觸式感應供電軌道系統之研究,國立成功大學電機工程學系碩士論文,2009年。
    [43] 張華敬,電動搬運載具用非接觸式三相線型感應供電軌道系統之研製,國立成功大學電機工程學系碩士論文,2013年。
    [44] 張雅婷,電動搬運載具用非接觸式條帶型感應供電軌道系統之研製,國立成功大學電機工程學系碩士論文,2015年。
    [45] 楊昆翰,非接觸式片狀感應供電軌道系統之研製,國立成功大學電機工程學系碩士論文,2014年。
    [46] Griffiths, D. J. (2008). Introduction to Electrodynamics. San Francisco, CA: Pearson.
    [47] M. Borage, S. Tiwari, and S. Kotaiah, “Analysis and design of an LCL-T resonant converter as a constant-current power supply,” IEEE Trans. Ind. Electron., vol. 52, no. 6, Dec. 2005.
    [48] TLP250 Data Sheet, Toshiba Inc., 2002.
    [49] PIC18F4520 Data Sheet, Microchip Technology Inc., 2004.
    [50] 曾百由,微處理器原理與應用組合語言與PIC18微控制器,五南圖書出版公司,台灣,2009年。

    下載圖示 校內:2019-07-25公開
    校外:2019-07-25公開
    QR CODE