| 研究生: |
莊士緯 Chuang, Shi-Wei |
|---|---|
| 論文名稱: |
聚亞醯胺/黏土奈米複合材料之合成及性質之研究 Synthesis and Properties of Polyimide-Clay Nanocomposites |
| 指導教授: |
許聯崇
Hsu, Lien-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 黏土 、奈米複合材料 、聚亞醯胺 |
| 外文關鍵詞: | nanocomposites, clay, polyimide |
| 相關次數: | 點閱:55 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究首先經由有機胺dodecylamine(DOA)及4-phenoxyaniline (POA)和鈉蒙特納石(Na+-mentmorillonite)進行離子交換反應,製成膨潤化的有機黏土(organ clay)。再利用二酸酐(dianhydride)單體和二胺(diamine)單體,製成聚醯胺酸/clay薄膜,最後將聚醯胺酸/clay薄膜在高溫(300℃)環化以形成聚亞醯胺/clay薄膜。經由X-ray繞射分析顯示,DOA-clay和POA-clay添加至5%時,呈脫層型分散,當添加量超過7%時,黏土開始出現聚集或插層分散。TEM分析也顯示添加3%及5% 黏土時,呈奈米分散,但添加7%黏土時,開始呈現聚集的情形。熱機械分析(TMA)指出,聚亞醯胺/clay奈米複合材料的熱膨脹係數隨clay添加量的增加而降低,添加7% DOA-clay時,聚亞醯胺的熱膨脹係數可以降低32%,而添加7% POA-clay時,聚亞醯胺的熱膨脹係數可降低18%,此外,其玻璃轉移溫度則隨clay添加量的增加而上升,添加5% clay時可達到最大值。由熱重量分析(TGA)可以看出添加有機黏土,可以增加聚亞醯胺的熱裂解溫度,添加5% clay時可達到最大值。由聚亞醯胺/clay薄膜試片的機械性質分析可以看出,有機黏土可以增加聚亞醯胺的彈性模數,添加7% DOA-clay的聚亞醯胺其彈性模數增加168%,而添加7% POA clay之聚亞醯胺,其彈性模數增加51%,顯示有機黏土有很好的補強效果,但其伸長率則隨黏土添加量的增加而降低。由介電常數分析顯示,黏土對聚亞醯胺介電常數影響不大,僅略為增加其介電常數。由吸水性實驗可看出添加黏土可降低聚亞醯胺的吸水率,添加5% clay時吸水率可達到最低值。從可見度分析可以看出,添加黏土會降低聚亞醯胺的可見度,但由熱安定性較好的POA-clay所製成的聚亞醯胺/clay薄膜,具有較佳的透光率。另外,由尺寸安定性實驗中可以瞭解,添加黏土可降低聚亞醯胺經熱處理後的尺寸變化。
Polyimide(PI)/clay nanocomposites have been prepared from a PI precursor-poly(amic acid) (PAA) and two different organoclays. The PI precursor was made by a polycondensation reaction between 4,4’-oxydianiline (ODA) and Pyromellitic dianhydride (PMDA). The organoclays were formed by a cation exchange reaction between a Na+-montorillonite clay and an ammonium salt of dodecylamine(DOA) or 4-phenoxyaniline (POA). Both X-ray diffraction (XRD) and transmission electron microscope (TEM) analyses showed that the organoclay was dispersed in PI matrix in a nanosacle. The in-plane coefficient of thermal expansion (CTE) of PI/clay film was decreased with the increasing amounts of organoclay. The CTE of PI/clay film which contained 7 wt % DOA-clay was decreased 32% compared to the pure film and the PI/clay film contained 7 wt % POA-clay was decreased 18% . Both of the glass transition temperatures (Tgs) and the thermal decomposition temperatures of PI/clay films increased with increasing amounts of organoclay. The tensile moduli of PI/clay films were increasing with the increasing amounts of organoclay. The tensile modulus of PI/clay film which contained 7 wt % DOA-clay was increased 168% compared to the pure PI film and the PI/clay film contained 7 wt % POA-clay was increased 51%. The dielectric constants of PI/clay films were slightly increased with the increasing amounts of organoclay. The water absorption of PI/clay film was decreased with the increasing amounts of organoclay. From UV-visible spectra, the PI/POA-clay film showed a batter transparency than the PI/DOA-clay film which could be due to the fact that the POA has a higher thermal stability than DOA. The size stability of PI/clay films after heat treatment was batter than the pure PI film.
1.官振豐,塑膠簡訊,第十七期(2003).
2.蔡中燕,化工資訊,pp.28(1998).
3.吳元馮、周森,“熱可塑型聚醯胺醯亞胺薄膜之合成與銅箔基板之接著應用”,第26屆高分子研討會論文專輯(2003).
4.S. Numata et.al., in“Rccent Advanced in Polyimide Science and Technology”, W. D. Weber ; M. R. Gupta Eds., Scoiety of Plastics Engineers, New York, pp.164(1987).
5.B. C. Auman, in“Advance in Polyimide Science and Technology”, F. Feger et.al. Eds., Scoiety of Plastics Engineers, New York, pp.15 (1993).
6.F.E. Arnold et.al., Polymer, Vol.33, pp.5179(1992).
7.K. Yano ; A. Usuki ; A. Okada ; T. Kurauchi ; O. J. Kamigato, Journal of Polymer Science Part A: Polymer Chemistry, Vol.31, pp.2493 (1993).
8.H. L. Tyan ; Y. C. Liu ; K. H. Wei, Chemistry of Materials, Vol.11, pp.1942 (1999).
9.吳仁傑,工業材料,125期,pp.115(1997).
10.A. Usuki ; M. Kawasumi ; Y. Kojima, Journal of Materials Research, Vol.7, pp.856 (1991).
11.P. B. Messersmith ; E. P. Giannelis, Journal of Polymer Science Part A: polymer Chemistry, Vol.33, pp.1047(1995).
12.H. Ishida ; S. Campbell ; J. Blackwell, Chemistry of Materials, Vol.12, pp.1260(2000).
13.S. D. Burnside ; E. P.Giannelis, Chemistry of Materials, Vol.7, No.9, pp.1597(1995).
14.樂文禮,“聚醯亞胺奈米矽氧複合材料選擇性封裝之研究”,國立成功大學化學工程研究所碩士論文(2002).
15.A. B. Morgan ; J. W. Gilman ; C. L. Jackson, Macromolecules, Vol34, pp.2735(2001).
16.H. L. Tyan ; K. H. Wei ; T. E. Hsieh, Journal of Polymer Science Part B: Polymer Physics, Vol.38, pp.2873(2000).
17.A. Gu, F. C. Chang, Journal of Applied Polymer Science, Vol.79, pp.289(2001).
18.T. Agag ; T. Koga ; T. Takeichi, Polymer, Vol.42, pp.3399(2001).
19.K. A. Carrado ; L. Xu, Chemistry of Materials, Vol.10, pp.1440 (1998).
20.趙杏媛、張有瑜,黏土礦物與黏土礦物分析,海洋出版社(1990).
21.蘇佳琪,“氧化鋁及氧化鐵插層蒙脫石吸附水中天然有機物之研究”,國立成功大學資源工程研究所碩士論文(2002).
22.A. C. Kathleen, Applied Clay Science, Vol.17, pp.1(2000).
23.M. Franchi ; E. Bramanti ; L.M. Bonzi ; P.L. Orioli ; C. Vettori, Origins of Life and Evolution of the Biosphere, Vol.29, No.3, pp.297 (1999).
24.G. Ertem ; J.P. Ferris, Origins of Life and Evolution of the Biosphere, Vol.28, pp.485(1998).
25.G. M. Bower ; L. W. Frost, Journal of Polymer Science Part A1, pp.3135(1963).
26.S. Takeda ; H. Akiyama ; H. Kakiuchi, Journal of Applied Polymer Science, Vol.35, pp.1341(1988).
27.郭正熙,“聚醯亞胺-聚醯胺系複合材料之研究”, 國立成功大學化學工程研究所碩士論文(1997).
28.金進興,工業材料,107期,pp.128(1995).
29.廖建勛,工業材料,125期,pp.108(1997).
30.A. Micheal ; D. Philippe, Materials Science and Engineering, Vol.28, pp.1(2000).
31.劉慧玲,“台東樟原黏土資源之有機黏土備製研究”,國立成功大學資源工程研究所碩士論文(2001).
32.D.M. Delozier ; R.A. Orwoll ; J.F. Cahoon, Polymer, Vol.43, pp.813 (2002).
33.Z. M. Liang ; J. Yin ; H. J. Xu, Polymer, Vol.44, pp.1391(2003).
34.J. H. Chang ; M. P. Kwang ; D. Cho, Polymer Engineering and Science, Vol.41, No.9, pp.1514(2001).
35.J. H. Chang ; M. P. Kwang, Polymer Engineering and Science, Vol.41, No.12, pp.2226(2001).
36.S. H. Hsiao ; G. S. Liou ; L. M. Chang, Journal of Applied Polymer Science, Vol.80, pp.2067(2001).
37.A. Gu ; S. W. Kuo ; F. C. Chang, Journal of Applied Polymer Science, Vo1.79, pp.1902(2001).
38.郭文法,工業材料,125期,pp.129(1997).
39.蔡中燕,工業材料,125期,pp.120(1997).
40.T. Lan ; P. D. Kaviratna ;T. J. Pannavaia, Chemistry of Materials, Vol.6, pp.573(1994).
41.D. A. Skoog ; J. J. Leary, Saunders College Publishing, US, pp.252 (1992).
42.A. Morikawa ; Y. Iyoku ; M. Kakimoto ; Y. Imai, Journal of Materials Chemistry, Vol.2, pp.679(1992).