簡易檢索 / 詳目顯示

研究生: 蘇琮智
Su, Cong-Zhi
論文名稱: 介電陶瓷材料(1-y)(Mg0.95Ni0.05)4(Nb1-xTax)2O9-y(Ca0.8Sr0.2)TiO3之研製及微波特性之探討與應用
Study on Microwave Dielectric Material of (1-y)(Mg0.95Ni0.05)4(Nb1-xTax)2O9-y(Ca0.8Sr0.2)TiO3 and Application for Wireless Communication
指導教授: 李炳鈞
Li, Bing-Jing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 125
中文關鍵詞: 介電陶瓷濾波器
外文關鍵詞: Dielectric ceramics, filter
相關次數: 點閱:54下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文首先探討(Mg0.95Ni0.05)4(Nb1-xTax)2O9(x=0.0~1.0)介電陶瓷材料之微波特性及其微結構。實驗結果顯示(Mg0.95Ni0.05)4Ta2O9在燒結溫度1375°C持溫4小時有較佳的微波特性:εr ~12.76、Q×f = 442,092GHz、τf ~-55.63ppm/°C。
    為了改善材料對溫度的穩定性,我們在(Mg0.95Ni0.05)4Ta2O9中選擇添加τf具有正值的材料(Ca0.8Sr0.2)TiO3(εr ~181、Q×f=8,300GHz、τf ~+991 ppm/°C),由實驗結果可知,0.3(Mg0.95Ni0.05)4Ta2O9-0.7(Ca0.8Sr0.2)TiO3在燒結溫度1350°C持溫4小時有較佳的微波特性:εr ~29.87、Q×f = 226,871GHz且τf ~-2.83ppm/°C。由於燒結溫度過高,我們嘗試著在Mg0.95Ni0.05)4Ta2O9中添加6~15 wt.%之燒結促進劑BaCu(B2O5)(BCB)( εr ~7.4、Q×f=50,000GHz、τf ~-32ppm/°C),BCB是個好的低溫共燒陶瓷,故使用它來降低其燒結溫度期望達到降低製作成本,增加其應用性。
    此外,本文藉由FR-4、Al2O3以及實驗研製之0.3(Mg0.95Ni0.05)4Ta2O9-0.7 (Ca0.8Sr0.2)TiO3為基板,製作一典型的交錯耦合式濾波器[1],中心頻率2.4GHz,並利用電磁模擬軟體Zeland-IE3D模擬與實作測量做比較,也顯示利用自製基板的高介電係數及低損耗可縮小濾波器之尺寸與得到較好的頻率響應結果。

    The microwave properties of (Mg0.95Ni0.05)4(Nb1-xTax)2O9(x=0.0~1.0) dielectric ceramic materials are discussed in this paper. The experimental results show that (Mg0.95Ni0.05)4Ta2O9sintered at 1375°C for 4 hours has the best microwave dielectric properties εr ~12.76, Q×f = 442,092GHz and τf ~-55.63ppm/°C. improve the temperature stability of the material, (Ca0.8Sr0.2)TiO3(τf ~ +991 ppm/°C) which has positive τf had been add. The experiment result showed that 0.3(Mg0.95Ni0.05)4Ta2O9-0.7(Ca0.8Sr0.2)TiO3 sintered at 1350°C for 4 hours has the best microwave dielectric properties εr ~29.87, Q×f = 226,871GHz and τf ~-2.83ppm/°C。
    In addition, a typical cross-coupled planar microwave filter on FR-4, Al2¬O3 and 0.3(Mg0.95Ni0.05)4Ta2O9-0.7(Ca0.8Sr0.2)TiO3 are fabricated. And use the electromagnetic simulation software Zeland-IE3D compare simulation with experimental measurements, the experimental measurements demonstrate the ceramic 0.3(Mg0.95Ni0.05)4Ta2O9-0.7(Ca0.8Sr0.2)TiO3 can be used for microwave applications because of their superior micro properties of low loss, small device area, high Q×f value and high relative dielectric constant substrate. As the sintering temperature is too high, BaCu(B2O5)(BCB) was used to decrease the sintering temperature of (Mg0.95Ni0.05)4Ta2O9 ceramics with 6~15 wt.% , BCB is a good low-temperature co-fired ceramics (εr ~7.4、Q×f=50,000GHz、τf ~-32ppm/°C) , expected to reduce production costs and increase its applicability.

    摘要 I Abstract II 誌謝 VIII 表目錄 XII 圖目錄 XIV 第一章 緒論 1 1-1 前言 1 1-2 研究目的 1 第二章 介電材料原理 3 2-1陶瓷材料之微波特性 3 2-1-1 介電常數(Dielectric constant : K、εr ) 3 2-1-2 品質因數 ( Q ) 7 2-1-3 共振頻率之溫度係數 ( ) 9 2-2 介電材料之燒結原理 10 2-3 介電共振器原理 13 2-4 Corundum結構 17 2-5鈣鈦礦結構(又稱113結構) 18 第三章 微帶線及濾波器原理 19 3-1 濾波器原理 19 3-1-1濾波器簡介 19 3-1-2濾波器之種類及其頻率響應 20 3-2 微帶線原理 23 3-2-1 微帶傳輸線的簡介 23 3-2-2 微帶線的傳輸模態 24 3-2-3 微帶線各項參數計算 25 3-2-4 微帶線的不連續效應 27 3-2-5 微帶線的損失 34 3-3 微帶線諧振器種類 35 3-3-1 λ/4短路微帶線共振器 36 3-3-2 λ/2開路微帶線共振器 37 3-4 共振器間的耦合形式 39 3-4-1 電場耦合 39 3-4-2 磁場耦合 43 3-4-3 混和耦合 47 3-5 四分之一波長的阻抗轉換器與開路殘段(open stub) 50 第四章 實驗程序與量測方法 52 4-1起始原料 52 4-2 介電材料之製備 54 4-2-1 粉末製作 55 4-2-2 塊材製作 56 4-3 微波介電材料的特性量測與分析 57 4-3-1 X-Ray Diffraction分析 57 4-3-2 SEM表面結構分析、EDS化學成分分析 59 4-3-3 密度之量測與計算 60 4-3-4 微波特性之量測 61 4-3-5 離子極化率(αobs)分析 68 4-3-6 共振頻率溫度飄移係數(τf)之測量 69 4-4 濾波器之製作與量測 70 4-4-1 濾波器製作 70 4-4-2 濾波器量測 72 第五章 實驗結果與討論 73 5-1(Mg0.95Ni0.05)4(Nb1-xTax)2O9特性探討 73 (Mg0.95Ni0.05)4(Nb1-xTax)2O9之XRD分析 73 (Mg0.95Ni0.05)4(Nb1-xTax)2O9之SEM、EDS分析 76 (Mg0.95Ni0.05)4(Nb1-xTax)2O9之密度分析 79 (Mg0.95Ni0.05)4(Nb1-xTax)2O9之介電常數、品質因數分析 81 (Mg0.95Ni0.05)4(Nb1-xTax)2O9溫度飄移係數分析 83 5-2 (1-y)(Mg0.95Ni0.05)4Ta2O9-y(Ca0.8Sr0.2)TiO3特性探討 85 (1-y)(Mg0.95Ni0.05)4Ta2O9-y(Ca0.8Sr0.2)TiO3之XRD分析 86 (1-y)(Mg0.95Ni0.05)4Ta2O9-y(Ca0.8Sr0.2)TiO3之SEM、EDS分析 89 (1-y)(Mg0.95Ni0.05)4Ta2O9-y(Ca0.8Sr0.2)TiO3之密度分析 92 (1-y)(Mg0.95Ni0.05)4Ta2O9-y(Ca0.8Sr0.2)TiO3介電常數、品質因數分析 93 (1-y)(Mg0.95Ni0.05)4Ta2O9-y(Ca0.8Sr0.2)TiO3溫度飄移係數分析 97 5-3 (Mg0.95Ni0.05)4Ta2O9-xwt.%BaCu(B2O5)特性探討 100 (Mg0.95Ni0.05)4Ta2O9-xwt.%BaCu(B2O5) 之XRD分析 101 (Mg0.95Ni0.05)4Ta2O9-xwt.%BaCu(B2O5) 之SEM分析 102 (Mg0.95Ni0.05)4Ta2O9-xwt.%BaCu(B2O5) 之密度分析 104 (Mg0.95Ni0.05)4Ta2O9-xwt.%BaCu(B2O5) 介電常數、品質因數分析 105 (Mg0.95Ni0.05)4Ta2O9-xwt.%BaCu(B2O5) 溫度飄移係數分析 107 5-4濾波器模擬與實作之比較 109 FR-4(玻璃纖維基板)之模擬與實作結果 112 Al2O3之模擬與實作結果 114 自製基板0.3(Mg0.95Ni0.05)4Ta2O9-0.7(Ca0.8Sr0.2)TiO3之模擬與實作結果 116 第六章 結論 120 參考文獻 122

    [1] H. Jia-Sheng and M. J. Lancaster, "Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters," Microwave Theory and Techniques, IEEE Transactions on, vol. 44, pp. 2099-2109, 1996.
    [2] A. Kan, H. Ogawa, A. Yokoi, and Y. Nakamura, "Crystal structural refinement of corundum-structured A4M2O9 (A=Co and Mg, M=Nb and Ta) microwave dielectric ceramics by high-temperature X-ray powder diffraction," Journal of the European Ceramic Society, vol. 27, pp. 2977-2981, 2007.
    [3] J.-Y. Chen, C.-Y. Jiang, and C.-L. Huang, "Low-loss microwave dielectrics in the Mg2(Ti0.95Sn0.05)O4-(Ca0.8Sr0.2)TiO3 ceramic system," Journal of Alloys and Compounds, vol. 502, pp. 324-328, 2010.
    [4] B. W. Hakki and P. D. Coleman, "A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range," IEEE Transactions on Microwave Theory and Techniques, vol. 8[4], pp. 402-410, 1960.
    [5] W. E. Courtney, "Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability Microwave Insulators," IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, vol. 18[8], pp. 476-485, 1970.
    [6] A. Kan, H. Ogawa, A. Yokoi, and Y. Nakamura, "Crystal structural refinement of corundum-structured A4M2O9 (A=Co and Mg, M=Nb and Ta) microwave dielectric ceramics by high-temperature X-ray powder diffraction," Journal of the European Ceramic Society, vol. 27, pp. 2977–2981, 2007.
    [7] C.-L. Huang, C.-H. Chu, F.-S. Liu, and P.-C. Yu, "High-Q microwave dielectrics in the (Mg1−xZnx)4Ta2O9 ceramics," Journal of Alloys and Compounds, vol. 590, pp. 494-499, 3/25/ 2014.
    [8] C.-L. Huang and W.-R. Yang, "Low-loss microwave dielectrics using (Mg1−xZnx)4Nb2O9 (x=0.02–0.08) solid solutions," Journal of Alloys and Compounds, vol. 509, pp. 2269-2272, 2/3/ 2011.
    [9] A. Yoshida, H. Ogawa, A. Kan, S. Ishihara, and Y. Higashida, "Influence of Zn and Ni substitutions for Mg on dielectric properties of (Mg4-xMx)(Nb2−ySby)O9 (M=Zn and Ni) solid solutions," Journal of the European Ceramic Society, vol. 24, pp. 1765-1768, // 2004.
    [10] Y.-B. Chen, "Dielectric properties and crystal structure of (Mg0.9Zn0.05Co0.05)4(Nb1−xTax)2O9 ceramics," Journal of Alloys and Compounds, vol. 541, pp. 283-287, 11/15/ 2012.
    [11] H. Ogawa, A. Kan, S. Ishihara, and Y. Higashida, "Crystal structure of corundum type Mg4(Nb2–xTax)O9 microwave dielectric ceramics with low dielectric loss," Journal of the European Ceramic Society, vol. 23, pp. 2485-2488, // 2003.
    [12] J.-Y. Chen and C.-L. Huang, "A new low-loss microwave dielectric using (Ca0.8Sr0.2)TiO3-doped MgTiO3 ceramics," Materials Letters, vol. 64, pp. 2585-2588, 12/15/ 2010.
    [13] P. L. Wise, I. M. Reaney, W. E. Lee, T. J. Price, D. M. Iddles, and D. S. Cannell, "Structure-microwave property relations in," Journal of the European Ceramic Society, vol. 21, pp. 1723-1726, 2001.
    [14] W. D. Kingery, H. K. Bowen, D. R. Uhlmann, and 陳皇鈞(譯), 陶瓷材料概論. 台北市: 曉園出版社有限公司, 1988.
    [15] W. J. Huppmann and G. Petzow, The Elementary Mechanisms of Liquid Sintering vol. Sintering Processes: Plenum Press, 1979.
    [16] K. S. Hwang, Rensselaer Ploytechnic in Troy, 1984.
    [17] R. M. German, "Liquid Phase Sintering," New York: Plenum Press1985.
    [18] J. H. Jean and C. H. Lin, "Coarsening of tungsten particles in W-Ni-Fe alloys," Journal of Materials Science, vol. 24, pp. 500-504, 1989.
    [19] D. M. Pozar, Microwave engineering, 2nd ed. New York: John Wily & Sons, Inc., 1998.
    [20] D. Kajfez, A. W. Glisson, and J. James, "Computed Modal Field Distributions for Isolated Dielectric Resonators," IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, vol. 32[12], pp. 1609-1616, 1984.
    [21] D. Kajfez, "Basic Principle Give Understanding of Dielectric Waveguides and Resonators," Microwave System News, vol. 13, pp. 152-161, 1983.
    [22] D. Kajfez and P. Guillon, Dielectric Resonators. New York: Artech House, 1989.
    [23] S. J. Penn, "Effect of porosity and grain size on the microwave dielectric properties of sintered alumina," J. Am. Ceram. Soc., vol. 80, pp. 1885–1888, 1997.
    [24] 吳朗, 電工材料: 滄海書局, 1998.
    [25] 余樹楨, 晶體之結構與性質: 渤海堂文化事業有限公司, 2009.
    [26] R. L. Geiger, P. E. Allen, and N. R. Strader, VLSI design techniques for analog and digital circuits: McGraw-Hill, 1990.
    [27] J. S. Hong and M. J. Lancaster, Microstrip filters for RF/microwave applications: John Wiley & Sons, 2001.
    [28] G. Kompa, Practical microstrip design and applications: Artech House, 2005.
    [29] 張盛富 and 戴明鳳, 無線通信之射頻被動電路設計: 全華圖書股份有限公司, 1998.
    [30] K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia, Microstrip lines and slotlines, Second Edition: Artech House, 1996.
    [31] R. A. Pucel, D. J. Masse, and C. P. Hartwig, "Losses in microstrip," IEEE Trans. Microwave Theory Tech., vol. MTT-16, pp. 342–350, 1968.
    [32] G. L. Matthaei, L. Young, and E. M. T. Jones, "Losses in microstrip," IEEE Trans. Microwave Theory Tech., vol. MTT-16, pp. 342–350, 1968.
    [33] E. J. Denlinger, "Losses of microstrip lines," IEEE Trans. Microwave Theory Tech., vol. 28 [6], pp. 513–522, 1980.
    [34] S. H. Cha, IEEE. Trans. MTT, vol. MTT-33 p. 519, 1985.
    [35] J.-Y. Chen, C.-Y. Jiang, and C.-L. Huang, "Low-loss microwave dielectrics in the Mg2(Ti0.95Sn0.05)O4–(Ca0.8Sr0.2)TiO3 ceramic system," Journal of Alloys and Compounds, vol. 502, pp. 324-328, 7/23/ 2010.
    [36] M. H. Kim, J. B. Lim, J. C. Kim, S. Nahm, J. H. Paik, J. H. Kim, et al., "Synthesis of BaCu(B2O5) ceramics and their effect on the sintering temperature and microwave dielectric properties of Ba(Zn 1/3Nb2/3)O3 ceramics," Journal of the American Ceramic Society, vol. 89, pp. 3124-3128, 2006.

    下載圖示 校內:2019-07-28公開
    校外:2019-07-28公開
    QR CODE