| 研究生: |
蘇琮智 Su, Cong-Zhi |
|---|---|
| 論文名稱: |
介電陶瓷材料(1-y)(Mg0.95Ni0.05)4(Nb1-xTax)2O9-y(Ca0.8Sr0.2)TiO3之研製及微波特性之探討與應用 Study on Microwave Dielectric Material of (1-y)(Mg0.95Ni0.05)4(Nb1-xTax)2O9-y(Ca0.8Sr0.2)TiO3 and Application for Wireless Communication |
| 指導教授: |
李炳鈞
Li, Bing-Jing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 介電陶瓷 、濾波器 |
| 外文關鍵詞: | Dielectric ceramics, filter |
| 相關次數: | 點閱:54 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文首先探討(Mg0.95Ni0.05)4(Nb1-xTax)2O9(x=0.0~1.0)介電陶瓷材料之微波特性及其微結構。實驗結果顯示(Mg0.95Ni0.05)4Ta2O9在燒結溫度1375°C持溫4小時有較佳的微波特性:εr ~12.76、Q×f = 442,092GHz、τf ~-55.63ppm/°C。
為了改善材料對溫度的穩定性,我們在(Mg0.95Ni0.05)4Ta2O9中選擇添加τf具有正值的材料(Ca0.8Sr0.2)TiO3(εr ~181、Q×f=8,300GHz、τf ~+991 ppm/°C),由實驗結果可知,0.3(Mg0.95Ni0.05)4Ta2O9-0.7(Ca0.8Sr0.2)TiO3在燒結溫度1350°C持溫4小時有較佳的微波特性:εr ~29.87、Q×f = 226,871GHz且τf ~-2.83ppm/°C。由於燒結溫度過高,我們嘗試著在Mg0.95Ni0.05)4Ta2O9中添加6~15 wt.%之燒結促進劑BaCu(B2O5)(BCB)( εr ~7.4、Q×f=50,000GHz、τf ~-32ppm/°C),BCB是個好的低溫共燒陶瓷,故使用它來降低其燒結溫度期望達到降低製作成本,增加其應用性。
此外,本文藉由FR-4、Al2O3以及實驗研製之0.3(Mg0.95Ni0.05)4Ta2O9-0.7 (Ca0.8Sr0.2)TiO3為基板,製作一典型的交錯耦合式濾波器[1],中心頻率2.4GHz,並利用電磁模擬軟體Zeland-IE3D模擬與實作測量做比較,也顯示利用自製基板的高介電係數及低損耗可縮小濾波器之尺寸與得到較好的頻率響應結果。
The microwave properties of (Mg0.95Ni0.05)4(Nb1-xTax)2O9(x=0.0~1.0) dielectric ceramic materials are discussed in this paper. The experimental results show that (Mg0.95Ni0.05)4Ta2O9sintered at 1375°C for 4 hours has the best microwave dielectric properties εr ~12.76, Q×f = 442,092GHz and τf ~-55.63ppm/°C. improve the temperature stability of the material, (Ca0.8Sr0.2)TiO3(τf ~ +991 ppm/°C) which has positive τf had been add. The experiment result showed that 0.3(Mg0.95Ni0.05)4Ta2O9-0.7(Ca0.8Sr0.2)TiO3 sintered at 1350°C for 4 hours has the best microwave dielectric properties εr ~29.87, Q×f = 226,871GHz and τf ~-2.83ppm/°C。
In addition, a typical cross-coupled planar microwave filter on FR-4, Al2¬O3 and 0.3(Mg0.95Ni0.05)4Ta2O9-0.7(Ca0.8Sr0.2)TiO3 are fabricated. And use the electromagnetic simulation software Zeland-IE3D compare simulation with experimental measurements, the experimental measurements demonstrate the ceramic 0.3(Mg0.95Ni0.05)4Ta2O9-0.7(Ca0.8Sr0.2)TiO3 can be used for microwave applications because of their superior micro properties of low loss, small device area, high Q×f value and high relative dielectric constant substrate. As the sintering temperature is too high, BaCu(B2O5)(BCB) was used to decrease the sintering temperature of (Mg0.95Ni0.05)4Ta2O9 ceramics with 6~15 wt.% , BCB is a good low-temperature co-fired ceramics (εr ~7.4、Q×f=50,000GHz、τf ~-32ppm/°C) , expected to reduce production costs and increase its applicability.
[1] H. Jia-Sheng and M. J. Lancaster, "Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters," Microwave Theory and Techniques, IEEE Transactions on, vol. 44, pp. 2099-2109, 1996.
[2] A. Kan, H. Ogawa, A. Yokoi, and Y. Nakamura, "Crystal structural refinement of corundum-structured A4M2O9 (A=Co and Mg, M=Nb and Ta) microwave dielectric ceramics by high-temperature X-ray powder diffraction," Journal of the European Ceramic Society, vol. 27, pp. 2977-2981, 2007.
[3] J.-Y. Chen, C.-Y. Jiang, and C.-L. Huang, "Low-loss microwave dielectrics in the Mg2(Ti0.95Sn0.05)O4-(Ca0.8Sr0.2)TiO3 ceramic system," Journal of Alloys and Compounds, vol. 502, pp. 324-328, 2010.
[4] B. W. Hakki and P. D. Coleman, "A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range," IEEE Transactions on Microwave Theory and Techniques, vol. 8[4], pp. 402-410, 1960.
[5] W. E. Courtney, "Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability Microwave Insulators," IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, vol. 18[8], pp. 476-485, 1970.
[6] A. Kan, H. Ogawa, A. Yokoi, and Y. Nakamura, "Crystal structural refinement of corundum-structured A4M2O9 (A=Co and Mg, M=Nb and Ta) microwave dielectric ceramics by high-temperature X-ray powder diffraction," Journal of the European Ceramic Society, vol. 27, pp. 2977–2981, 2007.
[7] C.-L. Huang, C.-H. Chu, F.-S. Liu, and P.-C. Yu, "High-Q microwave dielectrics in the (Mg1−xZnx)4Ta2O9 ceramics," Journal of Alloys and Compounds, vol. 590, pp. 494-499, 3/25/ 2014.
[8] C.-L. Huang and W.-R. Yang, "Low-loss microwave dielectrics using (Mg1−xZnx)4Nb2O9 (x=0.02–0.08) solid solutions," Journal of Alloys and Compounds, vol. 509, pp. 2269-2272, 2/3/ 2011.
[9] A. Yoshida, H. Ogawa, A. Kan, S. Ishihara, and Y. Higashida, "Influence of Zn and Ni substitutions for Mg on dielectric properties of (Mg4-xMx)(Nb2−ySby)O9 (M=Zn and Ni) solid solutions," Journal of the European Ceramic Society, vol. 24, pp. 1765-1768, // 2004.
[10] Y.-B. Chen, "Dielectric properties and crystal structure of (Mg0.9Zn0.05Co0.05)4(Nb1−xTax)2O9 ceramics," Journal of Alloys and Compounds, vol. 541, pp. 283-287, 11/15/ 2012.
[11] H. Ogawa, A. Kan, S. Ishihara, and Y. Higashida, "Crystal structure of corundum type Mg4(Nb2–xTax)O9 microwave dielectric ceramics with low dielectric loss," Journal of the European Ceramic Society, vol. 23, pp. 2485-2488, // 2003.
[12] J.-Y. Chen and C.-L. Huang, "A new low-loss microwave dielectric using (Ca0.8Sr0.2)TiO3-doped MgTiO3 ceramics," Materials Letters, vol. 64, pp. 2585-2588, 12/15/ 2010.
[13] P. L. Wise, I. M. Reaney, W. E. Lee, T. J. Price, D. M. Iddles, and D. S. Cannell, "Structure-microwave property relations in," Journal of the European Ceramic Society, vol. 21, pp. 1723-1726, 2001.
[14] W. D. Kingery, H. K. Bowen, D. R. Uhlmann, and 陳皇鈞(譯), 陶瓷材料概論. 台北市: 曉園出版社有限公司, 1988.
[15] W. J. Huppmann and G. Petzow, The Elementary Mechanisms of Liquid Sintering vol. Sintering Processes: Plenum Press, 1979.
[16] K. S. Hwang, Rensselaer Ploytechnic in Troy, 1984.
[17] R. M. German, "Liquid Phase Sintering," New York: Plenum Press1985.
[18] J. H. Jean and C. H. Lin, "Coarsening of tungsten particles in W-Ni-Fe alloys," Journal of Materials Science, vol. 24, pp. 500-504, 1989.
[19] D. M. Pozar, Microwave engineering, 2nd ed. New York: John Wily & Sons, Inc., 1998.
[20] D. Kajfez, A. W. Glisson, and J. James, "Computed Modal Field Distributions for Isolated Dielectric Resonators," IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, vol. 32[12], pp. 1609-1616, 1984.
[21] D. Kajfez, "Basic Principle Give Understanding of Dielectric Waveguides and Resonators," Microwave System News, vol. 13, pp. 152-161, 1983.
[22] D. Kajfez and P. Guillon, Dielectric Resonators. New York: Artech House, 1989.
[23] S. J. Penn, "Effect of porosity and grain size on the microwave dielectric properties of sintered alumina," J. Am. Ceram. Soc., vol. 80, pp. 1885–1888, 1997.
[24] 吳朗, 電工材料: 滄海書局, 1998.
[25] 余樹楨, 晶體之結構與性質: 渤海堂文化事業有限公司, 2009.
[26] R. L. Geiger, P. E. Allen, and N. R. Strader, VLSI design techniques for analog and digital circuits: McGraw-Hill, 1990.
[27] J. S. Hong and M. J. Lancaster, Microstrip filters for RF/microwave applications: John Wiley & Sons, 2001.
[28] G. Kompa, Practical microstrip design and applications: Artech House, 2005.
[29] 張盛富 and 戴明鳳, 無線通信之射頻被動電路設計: 全華圖書股份有限公司, 1998.
[30] K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia, Microstrip lines and slotlines, Second Edition: Artech House, 1996.
[31] R. A. Pucel, D. J. Masse, and C. P. Hartwig, "Losses in microstrip," IEEE Trans. Microwave Theory Tech., vol. MTT-16, pp. 342–350, 1968.
[32] G. L. Matthaei, L. Young, and E. M. T. Jones, "Losses in microstrip," IEEE Trans. Microwave Theory Tech., vol. MTT-16, pp. 342–350, 1968.
[33] E. J. Denlinger, "Losses of microstrip lines," IEEE Trans. Microwave Theory Tech., vol. 28 [6], pp. 513–522, 1980.
[34] S. H. Cha, IEEE. Trans. MTT, vol. MTT-33 p. 519, 1985.
[35] J.-Y. Chen, C.-Y. Jiang, and C.-L. Huang, "Low-loss microwave dielectrics in the Mg2(Ti0.95Sn0.05)O4–(Ca0.8Sr0.2)TiO3 ceramic system," Journal of Alloys and Compounds, vol. 502, pp. 324-328, 7/23/ 2010.
[36] M. H. Kim, J. B. Lim, J. C. Kim, S. Nahm, J. H. Paik, J. H. Kim, et al., "Synthesis of BaCu(B2O5) ceramics and their effect on the sintering temperature and microwave dielectric properties of Ba(Zn 1/3Nb2/3)O3 ceramics," Journal of the American Ceramic Society, vol. 89, pp. 3124-3128, 2006.