簡易檢索 / 詳目顯示

研究生: 趙雅雯
Chao, Ya-Wen
論文名稱: 用於空間可調式視訊編碼之改良型再取樣濾波器
Improved Image Resampling Filters for Spatial Scalable Video Coding Standards
指導教授: 劉濱達
Liu, Bin-Da
共同指導教授: 楊家輝
Yang, Jar-Ferr
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 58
中文關鍵詞: H.264/SVC空間可調性雙向濾波器方向性濾波器
外文關鍵詞: H.264/SVC, spatial scalability, bilateral filter, directional filter
相關次數: 點閱:182下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對可調性視訊編碼之空間可調性編碼(Spatial Scalable Coding)提出縮小取樣(Down Sampling)與放大取樣(Up Sampling)濾波器。改良型之縮小取樣濾波器採用雙向濾波器特性及適應式濾波器長度之方法,濾波器可有效地減少邊緣資訊失真,可將影像同質區域平滑化並保留非同質區域之細節部份。因此,其可減少基礎層(Base Layer)編碼位元。並且,由於保留邊緣之特性,使基礎層提供增強層(Enhancement Layer)較好的預測,因此亦可降低增強層的編碼位元。在影像中,本文以梯度運算方法,將邊緣與非邊緣作分類。在影像邊緣上缺失之像素,使用方向性內插法。實驗結果顯示,當提出的縮小取樣濾波器在基礎層編碼降低約20%的位元率時,增強層可減少1.5%
    的編碼位元。所提出的方向性內插方法,可提升PSNR 值約0.01dB~0.26dB,降低位元率約0.2%~16.3%。

    This thesis proposes a downsampling filter and an upsampling filter for spatial scalable video coding. The bilateral filter and adaptive filter length concepts are used in downsampling filter to reduce the loss of edge information in images. By smoothing the homogeneous area and preserving the details in the non-homogeneous area of images, the coding bits are reduced in the base layer coding. At the same time, the edge-preserving property in the base layer also provides a better prediction to save the coding bits in the enhancement layer. For upsampling filter, the direction information of an image is used.
    The local gradient determines the edges of an image. The missing pixels on the edges are obtained by performing the directional interpolation. Experimental results show that, for proposed downsampling filter, 1.5% bit-rate reduction is achieved in the enhancement layer while decreasing about 20% bit-rates on average in the base layers. For the roposed
    directional upsampling filter, the PSNR improvement and bit-rate reduction are 0.01dB~0.26dB and 0.2%~16.3%, respectively.

    Abstract ii Acknowledgement iii List of Tables vii List of Figures viii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Organization of the Thesis 2 Chapter 2 Spatial Scalability and Filters 4 2.1 Scalable Video Coding Architecture 4 2.1.1 Concepts of Scalability 6 2.2 Spatial Scalability 9 2.2.1 Interlayer Mechanisms in Spatial Scalability 11 2.2.2 Interlayer Motion Prediction 11 2.2.3 Interlayer Intra Texture Prediction 12 2.2.4 Interlayer Residual Prediction 13 2.3 Resampling Methods for Spatial Scalability 13 2.3.1 Downsampling Filter in the SVC 14 2.3.2 Upsampling Filters in the SVC 15 2.3.2.1 Summary of Upsampling Methods in SVC 19 2.3.3 Related Filter Designs 20 Chapter 3 Proposed Scaling Filters 22 3.1 Bilateral-based Downsampling Filter 22 3.1.1 Edge Detection 28 3.1.2 Bilateral Downsampling 29 3.2 Directional-based Upsampling Filter 32 3.2.1 Edge Detection 33 3.2.2 Directional Decision-making 33 3.2.3 Directional Interpolation 36 3.3 Summary 38 Chapter 4 Simulation Results and Comparisons 39 4.1 Experimental Environment Settings 39 4.2 Bilateral-based Downsampling Filter 40 4.3 Directional-based Upsampling Filter 49 Chapter 5 Conclusions and Future Work 53 5.1 Conclusions 53 5.2 Future Work 54 References 55

    [1]ISO/IEC JTC1/SC29/WG11 and ITU T SG16 Q.6, Joint Draft 10 of SVC Amendment, Document JVT-W201, Apr. 2007.

    [2]H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video coding extension of the H.264/AVC standard,” IEEE Trans. Circuits Syst. Video Technol., vol.17, pp. 1103-1120, Sept. 2007.

    [3]ISO/IEC JTC1/SC29/WG11 and ITU T SG16 Q.6, Joint Draft 11 of SVC Amendment, Document JVT-X201, July 2007.

    [4]T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra, “Overview of the H.264/AVC video coding standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, pp. 560–576, July 2003.

    [5]G. J. Sullivan and T. Wiegand, “Video compression-from concepts to the H.264/AVC standard,” Proc. IEEE, vol. 93, pp. 18–31, Jan. 2005.

    [6]D. Marpe, T. Wiegand, and G. J. Sullivan, “The H.264/MPEG4 advanced video coding standard and its applications,” IEEE Commun. Mag., vol. 44, pp. 134–144, Aug. 2006.

    [7]C. A. Segall and G. J. Sullivan, “Spatial scalability within the H.264/AVC scalable video coding extension,” IEEE Trans. Circuits Syst. Video Technol., vol. 17, pp. 1121-1135, Sept. 2007.

    [8]J. Goutsias and H. J. A. Heijmans, “Nonlinear multiresolution signal decomposition schemes I: Morphological pyramids,” IEEE Trans. Image Process., vol. 9, pp. 1862–1876, Nov. 2000.

    [9]P. Burt and E. Adelson, “The Laplacian pyramid as a compact image code,” IEEE Trans. Commun., vol. 31, pp. 532–540, Apr. 1983.

    [10]A. Toet, “Hierarchical image fusion,” Mach. Vis. Appl., vol. 3, pp. 1–11, Dec. 1990.

    [11]P. Burt, “Smart sensing within a pyramid vision machine,” Proc. IEEE, vol. 76, pp. 1006–1015, Aug. 1988.

    [12]G. Marquant, E.Francois, N. Burdin, P. Lopez, and J. Viéron, “Extended spatial scalability for non dyadic video formats: from SDTV to HDTV,” in Proc. Visual Comm. and Image Process., July 2005, pp. 547-558.

    [13]ISO/IEC JTC1/SC29/WG11 and ITU T SG16 Q.6, Generic Extended Spatial Scalability, Document JVT-O041, Apr. 2005.

    [14]ISO/IEC JTC1/SC29/WG11 and ITU T SG16 Q.6, Extended Spatial Scalability with Picture-Level Adaptation, Document JVT-O008, Apr. 2005.

    [15]H.264/SVC JSVM reference software. [Online] Available: http://ftp3.itu.int/av-arch/jvt-site/

    [16]ISO/IEC JTC1/SC29/WG11, Verification Model 18.0 of MPEG-4 Visual, Document N3908, Feb. 2001.

    [17]T. Wiegand, “Draft ITU-T recommendation and final draft international standard of joint video specification (ITU-T Rec. H.264/ISO/IEC 14496-10 AVC),” Mar. 2003.

    [18]R. M. Haralick and L. T. Watson, “A facet model for image data,” Comput. Graph. Image Process., vol.15, pp. 113-129, Feb. 1981.

    [19]M. S. Lee and C. W. Chang, “An efficient upsampling technique for images and videos,” in Proc. PCM., Dec. 2009, pp. 77-87.

    [20]C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” in Proc. Int. Conf. Computer Vision, Jan. 1998, pp. 839–846.

    [21]F. Durand and J. Dorsey, “Fast bilateral filtering for the display of high-dynamic-range images,” ACM Trans. Graph., vol.21, pp. 257–266, Nov. 2002.

    [22]G. Bjøntegaard, “Calculation of average PSNR differences between RD-curves,” ITU-T Q.6/16, Document VCEG-M33, Mar. 2001.

    無法下載圖示 校內:2020-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE