| 研究生: |
余江明 Yu, Jiang-Ming |
|---|---|
| 論文名稱: |
基於延伸型卡爾曼濾波器的混沌通訊 Extended-Kalman-Filter-Based Chaotic Communication |
| 指導教授: |
蔡聖鴻
Tsai, S. H. Jason |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 英文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 卡爾曼濾波器 、混沌通訊 |
| 外文關鍵詞: | extended kalman filter, communication, chaotic |
| 相關次數: | 點閱:82 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主旨在於探討基於延伸型卡爾曼濾波器之混沌通訊。首先,利用最佳線性化方法來找出混沌系統操作點的精確線性化模型。然後使用延伸型卡爾曼濾波器來估測已加入訊號於系統之參數與狀態。經由延伸型卡爾曼濾波器與最佳線性化模型之設計,可以將接收端之訊號完整的重建。由例題和模擬結果可顯示出本方法之效能。
An extended-Kalman-filter-based chaotic communication is first proposed in this thesis. First, the optimal linearization technique is utilized to find the exact linear models of the chaotic system at operating states of interest. Then, an extended Kalman filter (EKF) algorithm is used to estimate both the parameters and states where the message is already embedded. By the extended Kalman filter together with the optimal linear model, the message can be recovered well at the receiver’s end. Numerical examples and simulations are given to show the effectiveness of the proposed methodology.
References
[1] Angeli, A. D., Genesio, R. and Tesi, A. “Dead-beat chaos synchronization in discrete-time systems,” IEEE Trans. Circuits Syst., vol. 42(1), pp. 54-56, 1995.
[2] Bernardo, M. D. “An adaptive approach to the control and synchronization of continuous-time chaotic systems,” International Journal Bifurcations and Chaos 6, pp. 557-568, 1996.
[3] Boccaletti, S., Farini, S. and Arecchi, F. T., “Adaptive synchronization of chaos for secure communications,” Phys. Rev., E55, pp. 4979-4981, 1997.
[4] Chen, G. and Dong, X. From Chaos to Order: Methodologies, Perspectives and Applications, World Scientific Series on Nonlinear Science. Series A, vol. 24, 1998.
[5] Cuomo, K., Oppenneim, A. and Strogatz, S., “Synchronization of Lorenz-based chaotic circuits with applications to communications,” IEEE Trans. Circuits Syst. I, vol 40, pp 626-633, 1993.
[6] Dabney, J. B. and Harman, T. L., Mastering SIMULINK 2, New Jerry: Prentice-Hall, 1998.
[7] Guo, S. M., Shieh, L. S., Chen, G. and Lin, C. F., "Effective chaotic orbit tracker: a prediction-based digital redesign approach," IEEE Trans. on Circuits and Systems-I: Fundamental Theory and Applications, vol. 47, no. 11, pp. 1557 – 1570, 2000.
[8] Lian, K. Y. and Chiang, T. S. and Liu, P., “Discrete-time chaotic systems: applications in secure communications,” International Journal of Bifurcation and Chaos, vol. 10, pp. 2193-2206, 2000.
[9] Lakshmanan, M. and Murale, K. “Chaos in Nonlinear Oscillators: Controlling and synchronization (World Scientific, Singapore)”, 1996.
[10] H'non, M., “A two-dimensional mapping with a strange attractor,” Communications in Mathematical Physics, vol. 50, pp. 69-77, 1976.
[11] Parlitz and Kocarev L., “Multichannel communication using autosynchronization,” International Journal of Bifurcation and Chaos, vol. 6, no. 3, pp. 581-588.
[12] Rodriguez-Vazquez, A., Huertas, J. L., Rueda, A., Perez-Verdu, B. and Chua, L. O., “Chaos from switched-capacitor circuits: Discrete maps,” Proc. IEEE 75(8), pp. 1090-1106, 1987.
[13] Saridis, G. N., Stochastic Processes, Estimation, and Control: The Entropy Approach (Wiley), 1995.
[14] Sobiski, D. J. and Thorp, J. S., “PDMA2: the feedback Kalman filter and simultaneous multiple access of a single channel,” IEEE Trans. Circuits Syst. I, vol. 45(2), pp. 142-149, 1998.
[15] Sobiski, D. J. and Thorp, J. S., “PDMA1: Chaotic communication via the extended Kalman filter,” IEEE Trans. Circuits Syst. I, vol. 45(2), pp. 194-197, 1998.
[16] Teixeira, M. C. and Zak, S. H., “Stabilizing controller design for uncertain nonlinear systems using fuzzy models,” IEEE Trans. on Fuzzy Syst., vol. 7, pp. 199-142, 1999.
[17] Too, Y., and Chua L. O., “Secure communication via chaotic parameter modulation,” IEEE Trans. Circuit Syst. I, vol. 43, pp. 817-819, Sept. 1996.
[18] Wu, C. W., Yang, T. & Chua, L. O., “On adaptive synchronization and control of nonlinear dynamical systems,” International Journal of Bifurcation and Chaos, vol. 6, pp. 455-471, 1996.