| 研究生: |
謝易瑾 Hsieh, Yi-Chin |
|---|---|
| 論文名稱: |
水環境中工程奈米顆粒的表徵與環境宿命研究 A study on the characterization and environmental fate of engineered nanoparticles in the aqueous environment |
| 指導教授: |
侯文哲
Hou, Wen-Che |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2026 |
| 畢業學年度: | 114 |
| 語文別: | 英文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 串聯技術 、環境宿命 、奈米技術 |
| 外文關鍵詞: | Hyphenated technology, Environmental fate, Nanotechnology |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
工程奈米顆粒一旦釋放到水生環境中,並不會以本來的形式存在,工程奈米顆粒顆粒受同質聚集、異質聚集(heteroaggregation)、溶解或表面改質等過程產生改變,這些改變會顯著影響其環境宿命和風險。然而,目前的分析技術無法在環境條件下同時解析顆粒尺寸、元素組成和聚集狀態。即使適用於環境基質的單顆粒感應耦合電漿質譜儀(spICP-MS)也無法識別環境中最常見的異質聚集顆粒,因為該方法測量的是元素質量而非物理尺寸。因此,在複雜基質中分析工程奈米顆粒的異質聚集仍然是一項重大挑戰。
本論文發展電移動度分析儀結合單顆粒感應耦合電漿質譜儀(ATM-DMA-spICP-MS)的策略,解決了現有技術的侷限性。該方法整合了電移動度分析儀的粒徑分離技術與spICP-MS的單顆粒元素檢測技術,實現了奈米顆粒的二維粒徑分析。本研究同時解決過去ATM-DMA-spICP-MS在定性粒徑上碰到的瓶頸,研究結果顯示,電移動度的粒徑分布相較於標準品在較大粒徑上會有明顯的拖尾現象,此拖尾現象可歸因於水層包裹的奈米顆粒,本研究透過加熱氣膠流使其乾燥,有效消除拖尾。實驗證明,本方法具備優異的粒徑定性能力,能有效區分30 nm和50 nm的金奈米顆粒混合樣本。此外該方法在水樣濃度為4.1 × 105至 107 #/mL (即0.6至14.3 ug Au/L)時展現出良好的線性關係,並能將多顆粒事件降至最低。其方法偵測極限4.1 × 10⁵ #/mL (即0.6 μg Au/L),涵蓋環境中的奈米顆粒的真實濃度。本研究亦首次利用ATM-DMA-spICP-MS 表徵廢水樣本中金、銀奈米顆粒(AuNPs與AgNPs)的異質凝聚現象,證實兩者均會與廢水中固有的膠體或大分子形成異質凝聚體。該方法甚至能在添加外部AgNPs之前,直接檢測出原廢水樣本中固有的銀顆粒,彰顯了其在分析複雜環境基質中異質凝聚奈米顆粒的潛力。
本論文亦深入探討工程奈米顆粒的環境宿命,環境宿命的調查對於預測工程奈米顆粒在水環境中的遷移與轉化(即環境暴露評估)至關重要。為此,環境宿命模型亟需具備環境真實意義的參數以提高預測準確性。本研究首次針對環境真實濃度下的工程奈米顆粒(即氧化鋅奈米顆粒(ZnONPs))溶解情形進行了系統性調查,揭示了其溶解行為與傳統高濃度研究的結果截然不同。因此,採用符合環境真實濃度的條件來評估溶解宿命並推導相關參數顯得尤為重要。本研究在50至200 μg/L的環境相關濃度下,探討了ZnONPs在受都市、農業或海水影響的河水樣本中的溶解狀況。據我們所知,這是目前溶解研究中所使用的最低ZnONP濃度。結果顯示,在50 μg/L的低濃度下,ZnONPs在各類水體中均會完全溶解;而在100 μg/L與200 μg/L的較高濃度下,溶解程度則取決於水化學性質。重要的是,根據本研究的測量數據以及對現有研究(涵蓋海水、高鹼度河水、合成緩衝溶液等)的分析,我們發現初始ZnONP濃度的降低會導致一階溶解速率(1st-order dissolution rate)的增加。因此,在建構高預測性的環境宿命模型時,必須採用或測量基於環境相關濃度下的溶解速率參數。
總體而言,本論文開發了一種能解析複雜基質中同質聚集或異質聚集現象的二維粒徑分析法,並對ZnONPs的溶解過程提供了首次具環境真實意義的評估,進而推動了對工程奈米顆粒的表徵方法研究與環境宿命的理解。溶解研究的結果釐清了濃度與水化學性質如何影響環境真實濃度下ZnONPs的溶解行為。這些貢獻強化了評估水環境中工程奈米顆粒的科學基礎,並為未來的環境宿命建模提供了更可靠的參數。
Engineered nanomaterials (ENMs) undergo aggregation, heteroaggregation, dissolution, and surface modification once released into aquatic environments, and these transformations strongly influence their fate and risks. However, current analytical techniques cannot simultaneously resolve particle size, elemental composition, and aggregation state at environmentally relevant concentrations. Particularly, single-particle ICP-MS lacks the ability to identify heteroaggregates because it measures elemental mass rather than physical size. As a result, transformation-resolved characterization of ENMs in complex matrices remains a major challenge.
This dissertation addresses these limitations by developing and validating an atomizer differential mobility analysis coupled with single-particle ICP-MS (ATM-DMA–spICP-MS) method. The method integrates mobility diameter separation with particle-specific elemental detection, enabling two-dimensional nanoparticle size analysis. With this method, the tailing of electrical mobility size distribution observed in earlier studies using ATM-DMA-ICP-MS was resolved. It is shown that the size distribution tailing can be attributed to the water-shelled NPs that could be dehydrated by heating the aerosol flow, effectively eliminating the tailing. Our method exhibited a good sizing performance and can resolve mixed bimodal 30 nm and 50 nm AuNPs. The nano DMA-spICP-MS method can reliably analyze 7.8 × 105 to 1.9 × 107 # of 50 nm AuNPs (or 4.1 × 105 to 107 # NPs/mL equivalent to 0.6 to 14.3 μg Au/L) introduced with a linear response and minimized multiple particle events. The LOD for counting was 7.8 × 105 # AuNPs introduced (equivalent to 4.1 × 105 #/mL and 0.6 μg Au/L) that is relevant to environmental NP concentrations. DMA-spICP-MS was used for the first time to characterize heteroaggregated AuNPs and AgNPs in a wastewater sample, in which both NPs were shown to form heteroaggregates with colloids and/or macromolecules inherent in wastewater. DMA-spICP-MS was able to directly detect Ag particles inherent in the original wastewater even before adding external AgNPs, manifesting its potential to characterize heteroaggregated NPs in complex environmental matrices.
In addition, understanding the environmental fate processes of ENMs is essential in the prediction of their environmental fate and transport in the aqueous environment (i.e., environmental exposure of ENMs). To this end, the availability of environmentally realistic fate parameters is warranted in the predictivity of the fate models. This work provides the first systematic investigation of ZnONP dissolution at environmentally realistic concentrations, revealing dissolution behaviors that contrast sharply with those reported in traditional high concentration studies. Using environmentally relevant conditions to evaluate the fate processes and derive related parameters is therefore important. In this study, we have investigated ZnONP dissolution in two freshwater samples (river and lake) and a seawater-influenced river sample using environmentally relevant ZnONP concentrations of 50-200 μg/L. To our knowledge, these are the lowest concentrations of ZnONPs used among existing dissolution studies. We demonstrate the complete dissolution of ZnONPs at a low concentration of 50 μg/L independent of the water matrices involved, while at higher concentrations of 100 μg/L and 200 μg/L, the dissolution levels were dependent on the water chemistry. Importantly, we found a correlation of decreased initial ZnONP concentrations with increased 1st-order dissolution rate coefficients based on our measurements and those from existing studies where a range of water chemistry (e.g., seawater, high alkalinity river water, synthetic buffer solutions) was used. It is essential to measure or adopt ZnONP dissolution rate coefficients from studies using relevant ZnONP concentrations for use in building highly predictive environmental fate models. While this work focuses on ZnONPs, it is also important for future work to examine the concentration-dependent dissolution behavior for other dissolvable ENMs such as silver and copper nanoparticles.
Overall, this dissertation advances the characterization and environmental understanding of ENMs by validating a two-dimensional nanoparticle size analysis method capable of resolving aggregation and heteroaggregation in complex matrices, and by providing the first environmentally realistic assessment of ZnONP dissolution. The dissolution results clarify how concentration and water chemistry affect dissolution behavior of ZnONPs under realistic exposure levels. These contributions strengthen the scientific basis for evaluating fate of ENMs in aqueous environment and provide more reliable parameters for future environmental fate modeling.
Abad-Álvaro, I., Peña-Vázquez, E., Bolea, E., Bermejo-Barrera, P., Castillo, J.R., Laborda, F., 2016. Evaluation of number concentration quantification by single-particle inductively coupled plasma mass spectrometry: microsecond vs. millisecond dwell times. Anal. Bioanal. Chem. 408, 5089–5097. https://doi.org/10.1007/s00216-016-9515-y
Adam, V., Caballero-Guzman, A., Nowack, B., 2018. Considering the forms of released engineered nanomaterials in probabilistic material flow analysis. Environ. Pollut. 243, 17–27. https://doi.org/10.1016/j.envpol.2018.07.108
Adam, V., Wu, Q., Nowack, B., 2021. Integrated dynamic probabilistic material flow analysis of engineered materials in all European countries. NanoImpact 22, 100312. https://doi.org/10.1016/j.impact.2021.100312
Ahmed, B., Solanki, B., Zaidi, A., Khan, M.S., Musarrat, J., 2019. Bacterial toxicity of biomimetic green zinc oxide nanoantibiotic: insights into ZnONP uptake and nanocolloid–bacteria interface. Toxicol. Res. 8, 246–261. https://doi.org/10.1039/c8tx00267c
Al-Kattan, A., Wichser, A., Vonbank, R., Brunner, S., Ulrich, A., Zuin, S., Arroyo, Y., Golanski, L., Nowack, B., 2015. Characterization of materials released into water from paint containing nano-SiO2. Chemosphere 119, 1314–1321. https://doi.org/10.1016/j.chemosphere.2014.02.005
Alwan, A.K., Williams, P.A., 1979. Mineral formation from aqueous solution. Part I. The deposition of hydrozincite, Zn5(OH)6(CO3)2, from natural waters. Transit. Met. Chem. 4, 128–132. https://doi.org/10.1007/BF00618840
Anderson, D.J., 1989. Determination of the lower limit of detection. Clin. Chem. 35, 2152–2153. https://doi.org/10.1093/clinchem/35.10.2152
Baalousha, M., Stolpe, B., Lead, J.R., 2011. Flow field-flow fractionation for the analysis and characterization of natural colloids and manufactured nanoparticles in environmental systems: A critical review. J. Chromatogr. A, Flow-Field-Flow Fractionation 1218, 4078–4103. https://doi.org/10.1016/j.chroma.2011.04.063
Bacchetta, R., Maran, B., Marelli, M., Santo, N., Tremolada, P., 2016. Role of soluble zinc in ZnO nanoparticle cytotoxicity in Daphnia magna: A morphological approach. Environ. Res. 148, 376–385. https://doi.org/10.1016/j.envres.2016.04.028
Banerjee, S., Mazumdar, S., 2012. Electrospray Ionization Mass Spectrometry: A Technique to Access the Information beyond the Molecular Weight of the Analyte. Int. J. Anal. Chem. 2012, e282574. https://doi.org/10.1155/2012/282574
Bevers, S., Montaño, M.D., Rybicki, L., Hofmann, T., von der Kammer, F., Ranville, J.F., 2020. Quantification and Characterization of Nanoparticulate Zinc in an Urban Watershed. Front. Environ. Sci. 8.
Bian, S.-W., Mudunkotuwa, I.A., Rupasinghe, T., Grassian, V.H., 2011. Aggregation and Dissolution of 4 nm ZnO Nanoparticles in Aqueous Environments: Influence of pH, Ionic Strength, Size, and Adsorption of Humic Acid. Langmuir 27, 6059–6068. https://doi.org/10.1021/la200570n
Biswas, J.K., Sarkar, D., 2019. Nanopollution in the Aquatic Environment and Ecotoxicity: No Nano Issue! Curr. Pollut. Rep. 5, 4–7. https://doi.org/10.1007/s40726-019-0104-5
Bondarenko, O., Juganson, K., Ivask, A., Kasemets, K., Mortimer, M., Kahru, A., 2013. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch. Toxicol. 87, 1181–1200. https://doi.org/10.1007/s00204-013-1079-4
Boxall, A., Chaudhry, Q., Sinclair, C., Jones, A., Aitken, R., Jefferson, B., Watts, C., 2009. Current and future predicted environmental exposure to engineered nanoparticles (WEB SITE).
Buchman, J.T., Hudson-Smith, N.V., Landy, K.M., Haynes, C.L., 2019. Understanding Nanoparticle Toxicity Mechanisms To Inform Redesign Strategies To Reduce Environmental Impact. Acc. Chem. Res. 52, 1632–1642. https://doi.org/10.1021/acs.accounts.9b00053
Carboni, A., Slomberg, D.L., Nassar, M., Santaella, C., Masion, A., Rose, J., Auffan, M., 2021. Aquatic Mesocosm Strategies for the Environmental Fate and Risk Assessment of Engineered Nanomaterials. Environ. Sci. Technol. 55, 16270–16282. https://doi.org/10.1021/acs.est.1c02221
Cen, T., Torrent, L., Testino, A., Ludwig, C., 2024a. Rotating disk diluter hyphenated with single particle ICP-MS as an online dilution and sampling platform for metallic nanoparticles characterization in ambient aerosol. J. Aerosol Sci. 175, 106283. https://doi.org/10.1016/j.jaerosci.2023.106283
Cen, T., Zhao, Y.-B., Testino, A., Wang, J., Torrent, L., Ludwig, C., 2024b. Dilution versus fractionation: Separation technologies hyphenated with spICP-MS for characterizing metallic nanoparticles in aerosols. J. Aerosol Sci. 177, 106317. https://doi.org/10.1016/j.jaerosci.2023.106317
Chan, M.Y., Dowling, Q.M., Sivananthan, S.J., Kramer, R.M., 2017. Particle Sizing of Nanoparticle Adjuvant Formulations by Dynamic Light Scattering (DLS) and Nanoparticle Tracking Analysis (NTA), in: Fox, C.B. (Ed.), Vaccine Adjuvants: Methods and Protocols, Methods in Molecular Biology. Springer, New York, NY, pp. 239–252. https://doi.org/10.1007/978-1-4939-6445-1_17
Cherepanova, S., Markovskaya, D., Kozlova, E., 2017. Identification of a deleterious phase in photocatalyst based on Cd1 − xZnxS/Zn(OH)2 by simulated XRD patterns. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 73, 360–368. https://doi.org/10.1107/S2052520617001664
Covert, D., Wiedensohler, A., Russell, L., 1997. Particle Charging and Transmission Efficiencies of Aerosol Charge Neutralizes. Aerosol Sci. Technol. 27, 206–214. https://doi.org/10.1080/02786829708965467
Dale, A.L., Casman, E.A., Lowry, G.V., Lead, J.R., Viparelli, E., Baalousha, M., 2015. Modeling Nanomaterial Environmental Fate in Aquatic Systems. Environ. Sci. Technol. 49, 2587–2593. https://doi.org/10.1021/es505076w
David, C.A., Galceran, J., Rey-Castro, C., Puy, J., Companys, E., Salvador, J., Monné, J., Wallace, R., Vakourov, A., 2012. Dissolution Kinetics and Solubility of ZnO Nanoparticles Followed by AGNES. J. Phys. Chem. C 116, 11758–11767. https://doi.org/10.1021/jp301671b
Dibyanshu, K., Chhaya, T., Raychoudhury, T., 2022. A review on the fate and transport behavior of engineered nanoparticles: possibility of becoming an emerging contaminant in the groundwater. Int. J. Environ. Sci. Technol. https://doi.org/10.1007/s13762-021-03835-9
Du, J., Tang, J., Xu, S., Ge, J., Dong, Y., Li, H., Jin, M., 2020. ZnO nanoparticles: recent advances in ecotoxicity and risk assessment. Drug Chem. Toxicol. 43, 322–333. https://doi.org/10.1080/01480545.2018.1508218
Dumont, E., Johnson, A.C., Keller, V.D.J., Williams, R.J., 2015. Nano silver and nano zinc-oxide in surface waters – Exposure estimation for Europe at high spatial and temporal resolution. Environ. Pollut. 196, 341–349. https://doi.org/10.1016/j.envpol.2014.10.022
Elzey, S., Tsai, D.-H., Yu, L.L., Winchester, M.R., Kelley, M.E., Hackley, V.A., 2013. Real-time size discrimination and elemental analysis of gold nanoparticles using ES-DMA coupled to ICP-MS. Anal. Bioanal. Chem. 405, 2279–2288. https://doi.org/10.1007/s00216-012-6617-z
Erickson, H.P., 2009. Size and Shape of Protein Molecules at the Nanometer Level Determined by Sedimentation, Gel Filtration, and Electron Microscopy. Biol. Proced. Online 11, 32–51. https://doi.org/10.1007/s12575-009-9008-x
European Chemicals Agency., 2019. Appendix for nanoforms applicable to the guidance on QSARs and Grouping of Chemicals: guidance on information requirements and chemical safety assessment. Publications Office, LU.
Fabricius, A.-L., Duester, L., Meermann, B., Ternes, T.A., 2014. ICP-MS-based characterization of inorganic nanoparticles—sample preparation and off-line fractionation strategies. Anal. Bioanal. Chem. 406, 467–479. https://doi.org/10.1007/s00216-013-7480-2
Franklin, N.M., Rogers, N.J., Apte, S.C., Batley, G.E., Gadd, G.E., Casey, P.S., 2007. Comparative Toxicity of Nanoparticulate ZnO, Bulk ZnO, and ZnCl2 to a Freshwater Microalga (Pseudokirchneriella subcapitata): The Importance of Particle Solubility. Environ. Sci. Technol. 41, 8484–8490. https://doi.org/10.1021/es071445r
Fréchette-Viens, L., Hadioui, M., Wilkinson, K.J., 2019. Quantification of ZnO nanoparticles and other Zn containing colloids in natural waters using a high sensitivity single particle ICP-MS. Talanta 200, 156–162. https://doi.org/10.1016/j.talanta.2019.03.041
Garner, K.L., Suh, S., Keller, A.A., 2017. Assessing the Risk of Engineered Nanomaterials in the Environment: Development and Application of the nanoFate Model. Environ. Sci. Technol. 51, 5541–5551. https://doi.org/10.1021/acs.est.6b05279
Gelabert, A., Sivry, Y., Ferrari, R., Akrout, A., Cordier, L., Nowak, S., Menguy, N., Benedetti, M.F., 2014. Uncoated and coated ZnO nanoparticle life cycle in synthetic seawater. Environ. Toxicol. Chem. 33, 341–349. https://doi.org/10.1002/etc.2447
Ghosh, M., Sinha, S., Jothiramajayam, M., Jana, A., Nag, A., Mukherjee, A., 2016. Cyto-genotoxicity and oxidative stress induced by zinc oxide nanoparticle in human lymphocyte cells in vitro and Swiss albino male mice in vivo. Food Chem. Toxicol. 97, 286–296. https://doi.org/10.1016/j.fct.2016.09.025
Giese, B., Klaessig, F., Park, B., Kaegi, R., Steinfeldt, M., Wigger, H., von Gleich, A., Gottschalk, F., 2018. Risks, Release and Concentrations of Engineered Nanomaterial in the Environment. Sci. Rep. 8, 1565. https://doi.org/10.1038/s41598-018-19275-4
Gottschalk, F., Nowack, B., 2011. The release of engineered nanomaterials to the environment. J. Environ. Monit. 13, 1145–1155. https://doi.org/10.1039/C0EM00547A
Gottschalk, F., Sonderer, T., Scholz, R.W., Nowack, B., 2009. Modeled Environmental Concentrations of Engineered Nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for Different Regions. Environ. Sci. Technol. 43, 9216–9222. https://doi.org/10.1021/es9015553
Gottschalk, F., Sun, T., Nowack, B., 2013. Environmental concentrations of engineered nanomaterials: Review of modeling and analytical studies. Environ. Pollut. 181, 287–300. https://doi.org/10.1016/j.envpol.2013.06.003
Gray, E.P., Bruton, T.A., Higgins, C.P., Halden, R.U., Westerhoff, P., Ranville, J.F., 2012. Analysis of gold nanoparticle mixtures: a comparison of hydrodynamic chromatography (HDC) and asymmetrical flow field-flow fractionation (AF4) coupled to ICP-MS. J. Anal. At. Spectrom. 27, 1532. https://doi.org/10.1039/c2ja30069a
Guha, S., Li, M., Tarlov, M.J., Zachariah, M.R., 2012. Electrospray–differential mobility analysis of bionanoparticles. Trends Biotechnol. 30, 291–300. https://doi.org/10.1016/j.tibtech.2012.02.003
Hachenberger, Y.U., Rosenkranz, D., Kriegel, F.L., Krause, B., Matschaß, R., Reichardt, P., Tentschert, J., Laux, P., Jakubowski, N., Panne, U., Luch, A., 2020. Tackling Complex Analytical Tasks: An ISO/TS-Based Validation Approach for Hydrodynamic Chromatography Single Particle Inductively Coupled Plasma Mass Spectrometry. Materials 13, 1447. https://doi.org/10.3390/ma13061447
Hess, A., Tarik, M., Losert, S., Ilari, G., Ludwig, C., 2016. Measuring air borne nanoparticles for characterizing hyphenated RDD-SMPS-ICPMS instrumentation. J. Aerosol Sci. 92, 130–141. https://doi.org/10.1016/j.jaerosci.2015.10.007
Hess, A., Tarik, M., Ludwig, C., 2015. A hyphenated SMPS–ICPMS coupling setup: Size-resolved element specific analysis of airborne nanoparticles. J. Aerosol Sci. 88, 109–118. https://doi.org/10.1016/j.jaerosci.2015.05.016
Hineman, A., Stephan, C., 2014. Effect of dwell time on single particle inductively coupled plasma mass spectrometry data acquisition quality. J. Anal. At. Spectrom. 29, 1252–1257. https://doi.org/10.1039/C4JA00097H
Huynh, K.A., Siska, E., Heithmar, E., Tadjiki, S., Pergantis, S.A., 2016. Detection and Quantification of Silver Nanoparticles at Environmentally Relevant Concentrations Using Asymmetric Flow Field–Flow Fractionation Online with Single Particle Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 88, 4909–4916. https://doi.org/10.1021/acs.analchem.6b00764
Jain, A., Ranjan, S., Dasgupta, N., Ramalingam, C., 2018. Nanomaterials in food and agriculture: An overview on their safety concerns and regulatory issues. Crit. Rev. Food Sci. Nutr. 58, 297–317. https://doi.org/10.1080/10408398.2016.1160363
Jamdagni, P., Khatri, P., Rana, J.S., 2018. Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. J. King Saud Univ. - Sci. 30, 168–175. https://doi.org/10.1016/j.jksus.2016.10.002
Jeevanandam, J., Barhoum, A., Chan, Y.S., Dufresne, A., Danquah, M.K., 2018. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol. 9, 1050–1074. https://doi.org/10.3762/bjnano.9.98
Jeon, S., Kim, E., Lee, J., Lee, S., 2016. Potential risks of TiO2 and ZnO nanoparticles released from sunscreens into outdoor swimming pools. J. Hazard. Mater. 317, 312–318. https://doi.org/10.1016/j.jhazmat.2016.05.099
Jiang, C., Aiken, G.R., Hsu-Kim, H., 2015. Effects of Natural Organic Matter Properties on the Dissolution Kinetics of Zinc Oxide Nanoparticles. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.5b02406
Kaegi, R., Sinnet, B., Zuleeg, S., Hagendorfer, H., Mueller, E., Vonbank, R., Boller, M., Burkhardt, M., 2010. Release of silver nanoparticles from outdoor facades. Environ. Pollut. 158, 2900–2905. https://doi.org/10.1016/j.envpol.2010.06.009
Kaegi, R., Voegelin, A., Sinnet, B., Zuleeg, S., Hagendorfer, H., Burkhardt, M., Siegrist, H., 2011. Behavior of Metallic Silver Nanoparticles in a Pilot Wastewater Treatment Plant. Environ. Sci. Technol. 45, 3902–3908. https://doi.org/10.1021/es1041892
Kapellios, E.A., Pergantis, S.A., 2012. Size and elemental composition of nanoparticles using ion mobility spectrometry with inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 27, 21–24. https://doi.org/10.1039/C1JA10237K
Keller, A.A., McFerran, S., Lazareva, A., Suh, S., 2013. Global life cycle releases of engineered nanomaterials. J. Nanoparticle Res. 15, 1692. https://doi.org/10.1007/s11051-013-1692-4
Keller, A.A., Vosti, W., Wang, H., Lazareva, A., 2014. Release of engineered nanomaterials from personal care products throughout their life cycle. J. Nanoparticle Res. 16, 2489. https://doi.org/10.1007/s11051-014-2489-9
Kibasomba, P.M., Dhlamini, S., Maaza, M., Liu, C.-P., Rashad, M.M., Rayan, D.A., Mwakikunga, B.W., 2018. Strain and grain size of TiO2 nanoparticles from TEM, Raman spectroscopy and XRD: The revisiting of the Williamson-Hall plot method. Results Phys. 9, 628–635. https://doi.org/10.1016/j.rinp.2018.03.008
Knightes, C.D., Ambrose, R.B., Avant, B., Han, Y., Acrey, B., Bouchard, D.C., Zepp, R., Wool, T., 2019. Modeling framework for simulating concentrations of solute chemicals, nanoparticles, and solids in surface waters and sediments: WASP8 Advanced Toxicant Module. Environ. Model. Softw. 111, 444–458. https://doi.org/10.1016/j.envsoft.2018.10.012
Kołodziejczak-Radzimska, A., Jesionowski, T., 2014. Zinc Oxide-From Synthesis to Application: A Review. Mater. Basel Switz. 7, 2833–2881. https://doi.org/10.3390/ma7042833
Krystek, P., Ulrich, A., Garcia, C.C., Manohar, S., Ritsema, R., 2011. Application of plasma spectrometry for the analysis of engineered nanoparticles in suspensions and products. J. Anal. At. Spectrom. 26, 1701. https://doi.org/10.1039/c1ja10071h
Labille, J., Slomberg, D., Catalano, R., Robert, S., Apers-Tremelo, M.-L., Boudenne, J.-L., Manasfi, T., Radakovitch, O., 2020. Assessing UV filter inputs into beach waters during recreational activity: A field study of three French Mediterranean beaches from consumer survey to water analysis. Sci. Total Environ. 706, 136010. https://doi.org/10.1016/j.scitotenv.2019.136010
Laborda, F., Bolea, E., Cepriá, G., Gómez, M.T., Jiménez, M.S., Pérez-Arantegui, J., Castillo, J.R., 2016. Detection, characterization and quantification of inorganic engineered nanomaterials: A review of techniques and methodological approaches for the analysis of complex samples. Anal. Chim. Acta 904, 10–32. https://doi.org/10.1016/j.aca.2015.11.008
Laborda, F., Bolea, E., Jiménez-Lamana, J., 2014. Single Particle Inductively Coupled Plasma Mass Spectrometry: A Powerful Tool for Nanoanalysis. Anal. Chem. 86, 2270–2278. https://doi.org/10.1021/ac402980q
Lead, J.R., Batley, G.E., Alvarez, P.J.J., Croteau, M.-N., Handy, R.D., McLaughlin, M.J., Judy, J.D., Schirmer, K., 2018. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects—An updated review. Environ. Toxicol. Chem. 37, 2029–2063. https://doi.org/10.1002/etc.4147
Lee, Y.-L., Shih, Y.-S., Chen, Z.-Y., Cheng, F.-Y., Lu, J.-Y., Wu, Y.-H., Wang, Y.-J., 2022. Toxic Effects and Mechanisms of Silver and Zinc Oxide Nanoparticles on Zebrafish Embryos in Aquatic Ecosystems. Nanomaterials 12, 717. https://doi.org/10.3390/nano12040717
Leopold, K., Philippe, A., Wörle, K., Schaumann, G.E., 2016. Analytical strategies to the determination of metal-containing nanoparticles in environmental waters. TrAC Trends Anal. Chem., Recent advances and trends in Analytical Nanoscience and Nanotechnology 84, 107–120. https://doi.org/10.1016/j.trac.2016.03.026
Lespes, G., Gigault, J., 2011. Hyphenated analytical techniques for multidimensional characterisation of submicron particles: A review. Anal. Chim. Acta 692, 26–41. https://doi.org/10.1016/j.aca.2011.02.052
Leung, C.Y., Tu, Y., Tang, B.Z., Wang, W.-X., 2019. Dissolution kinetics of zinc oxide nanoparticles: real-time monitoring using a Zn2+-specific fluorescent probe. Environ. Sci. Nano 6, 2259–2268. https://doi.org/10.1039/C9EN00553F
Lewicka, Z.A., Benedetto, A.F., Benoit, D.N., Yu, W.W., Fortner, J.D., Colvin, V.L., 2011. The structure, composition, and dimensions of TiO2 and ZnO nanomaterials in commercial sunscreens. J. Nanoparticle Res. 13, 3607–3617. https://doi.org/10.1007/s11051-011-0438-4
Li, C., Lee, A.L., Chen, X., Pomerantz, W.C.K., Haynes, C.L., Hogan, C.J., 2020. Multidimensional Nanoparticle Characterization through Ion Mobility-Mass Spectrometry. Anal. Chem. 92, 2503–2510. https://doi.org/10.1021/acs.analchem.9b04012
Li, M., Zhu, L., Lin, D., 2011. Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ. Sci. Technol. 45, 1977–1983. https://doi.org/10.1021/es102624t
Lin, P.-C., Lin, S., Wang, P.C., Sridhar, R., 2014. Techniques for physicochemical characterization of nanomaterials. Biotechnol. Adv., Biotechnology in Nanomedicine 32, 711–726. https://doi.org/10.1016/j.biotechadv.2013.11.006
Liu, S., Xia, T., 2020. Continued Efforts on Nanomaterial-Environmental Health and Safety Is Critical to Maintain Sustainable Growth of Nanoindustry. Small 16, 2000603. https://doi.org/10.1002/smll.202000603
Lu, H.-Y., Wang, Y.-J., Hou, W.-C., 2021. Bioaccumulation and depuration of TiO2 nanoparticles by zebrafish through dietary exposure: Size- and number concentration-resolved analysis using single-particle ICP-MS. J. Hazard. Mater. 127801. https://doi.org/10.1016/j.jhazmat.2021.127801
Lu, P.J., Fang, S.W., Cheng, W.L., Huang, S.C., Huang, M.C., Cheng, H.F., 2018. Characterization of titanium dioxide and zinc oxide nanoparticles in sunscreen powder by comparing different measurement methods. J. Food Drug Anal. 26, 1192–1200. https://doi.org/10.1016/j.jfda.2018.01.010
Lv, J., Zhang, S., Luo, L., Han, W., Zhang, J., Yang, K., Christie, P., 2012. Dissolution and Microstructural Transformation of ZnO Nanoparticles under the Influence of Phosphate. Environ. Sci. Technol. 46, 7215–7221. https://doi.org/10.1021/es301027a
Ma, H., Williams, P.L., Diamond, S.A., 2013. Ecotoxicity of manufactured ZnO nanoparticles – A review. Environ. Pollut. 172, 76–85. https://doi.org/10.1016/j.envpol.2012.08.011
Ma, R., Levard, C., Michel, F.M., Brown, G.E., Lowry, G.V., 2013. Sulfidation Mechanism for Zinc Oxide Nanoparticles and the Effect of Sulfidation on Their Solubility. Environ. Sci. Technol. 47, 2527–2534. https://doi.org/10.1021/es3035347
Mader, B.T., Ellefson, M.E., Wolf, S.T., 2015. Measurements of nanomaterials in environmentally relevant water matrices using liquid nebulization/differential mobility analysis. Environ. Toxicol. Chem. 34, 833–842. https://doi.org/10.1002/etc.2865
Mavrocordatos, D., Pronk, W., Boller, M., 2004. Analysis of environmental particles by atomic force microscopy, scanning and transmission electron microscopy. Water Sci. Technol. 50, 9–18. https://doi.org/10.2166/wst.2004.0690
Meesters, J. a. J., Quik, J.T.K., Koelmans, A.A., Hendriks, A.J., Meent, D. van de, 2016. Multimedia environmental fate and speciation of engineered nanoparticles: a probabilistic modeling approach. Environ. Sci. Nano 3, 715–727. https://doi.org/10.1039/C6EN00081A
Mehta, N., Basu, S., Kumar, A., 2016. Separation of zinc oxide nanoparticles in water stream by membrane filtration. J. Water Reuse Desalination 6, 148–155. https://doi.org/10.2166/wrd.2015.069
Meili-Borovinskaya, O., Meier, F., Drexel, R., Baalousha, M., Flamigni, L., Hegetschweiler, A., Kraus, T., 2021. Analysis of complex particle mixtures by asymmetrical flow field-flow fractionation coupled to inductively coupled plasma time-of-flight mass spectrometry. J. Chromatogr. A 1641, 461981. https://doi.org/10.1016/j.chroma.2021.461981
Miao, A.-J., Zhang, X.-Y., Luo, Z., Chen, C.-S., Chin, W.-C., Santschi, P.H., Quigg, A., 2010. Zinc oxide–engineered nanoparticles: Dissolution and toxicity to marine phytoplankton. Environ. Toxicol. Chem. 29, 2814–2822. https://doi.org/10.1002/etc.340
Mitrano, D.M., Barber, A., Bednar, A., Westerhoff, P., Higgins, C.P., Ranville, J.F., 2012a. Silver nanoparticle characterization using single particle ICP-MS (SP-ICP-MS) and asymmetrical flow field flow fractionation ICP-MS (AF4-ICP-MS). J. Anal. At. Spectrom. 27, 1131–1142. https://doi.org/10.1039/C2JA30021D
Mitrano, D.M., Lesher, E.K., Bednar, A., Monserud, J., Higgins, C.P., Ranville, J.F., 2012b. Detecting nanoparticulate silver using single-particle inductively coupled plasma–mass spectrometry. Environ. Toxicol. Chem. 31, 115–121. https://doi.org/10.1002/etc.719
Montoro Bustos, A.R., Murphy, K.E., Winchester, M.R., 2022. Evaluation of the Potential of Single Particle ICP-MS for the Accurate Measurement of the Number Concentration of AuNPs of Different Sizes and Coatings. Anal. Chem. 94, 3091–3102. https://doi.org/10.1021/acs.analchem.1c04140
Mudalige, T., Qu, H., Van Haute, D., Ansar, S.M., Paredes, A., Ingle, T., 2019. Chapter 11 - Characterization of Nanomaterials: Tools and Challenges, in: López Rubio, A., Fabra Rovira, M.J., martínez Sanz, M., Gómez-Mascaraque, L.G. (Eds.), Nanomaterials for Food Applications, Micro and Nano Technologies. Elsevier, pp. 313–353. https://doi.org/10.1016/B978-0-12-814130-4.00011-7
Mudunkotuwa, I.A., Rupasinghe, T., Wu, C.-M., Grassian, V.H., 2012. Dissolution of ZnO Nanoparticles at Circumneutral pH: A Study of Size Effects in the Presence and Absence of Citric Acid. Langmuir 28, 396–403. https://doi.org/10.1021/la203542x
Myojo, T., Takaya, M., Ono-Ogasawara, M., 2002. DMA as a Gas Converter from Aerosol to “Argonsol” for Real-Time Chemical Analysis Using ICP-MS. Aerosol Sci. Technol. 36, 76–83. https://doi.org/10.1080/027868202753339096
Nishiguchi, K., Utani, K., Fujimori, E., 2008. Real-time multielement monitoring of airborne particulate matter using ICP-MS instrument equipped with gas converter apparatus. J. Anal. At. Spectrom. 23, 1125–1129. https://doi.org/10.1039/B802302F
Ohata, M., Nishiguchi, K., 2018. Research Progress on Gas to Particle Conversion-Gas Exchange ICP-MS for Direct Analysis of Ultra-trace Metallic Compound Gas. Anal. Sci. 34, 657–666. https://doi.org/10.2116/analsci.18SBR01
Pace, H.E., Rogers, N.J., Jarolimek, C., Coleman, V.A., Gray, E.P., Higgins, C.P., Ranville, J.F., 2012. Single particle inductively coupled plasma-mass spectrometry: a performance evaluation and method comparison in the determination of nanoparticle size. Environ. Sci. Technol. 46, 12272–12280. https://doi.org/10.1021/es301787d
Pace, H.E., Rogers, N.J., Jarolimek, C., Coleman, V.A., Higgins, C.P., Ranville, J.F., 2011. Determining Transport Efficiency for the Purpose of Counting and Sizing Nanoparticles via Single Particle Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 83, 9361–9369. https://doi.org/10.1021/ac201952t
Palmberg, C., Dernis, H., Miguet, C., 2009. Nanotechnology: An Overview Based on Indicators and Statistics. https://doi.org/10.1787/223147043844
Papadopulos, F., Spinelli, M., Valente, S., Foroni, L., Orrico, C., Alviano, F., Pasquinelli, G., 2007. Common Tasks in Microscopic and Ultrastructural Image Analysis Using ImageJ. Ultrastruct. Pathol. 31, 401–407. https://doi.org/10.1080/01913120701719189
Part, F., Berge, N., Baran, P., Stringfellow, A., Sun, W., Bartelt-Hunt, S., Mitrano, D., Li, L., Hennebert, P., Quicker, P., Bolyard, S.C., Huber-Humer, M., 2018. A review of the fate of engineered nanomaterials in municipal solid waste streams. Waste Manag. 75, 427–449. https://doi.org/10.1016/j.wasman.2018.02.012
Patel, G., Patra, C., Srinivas, S.P., Kumawat, M., Navya, P.N., Daima, H.K., 2021. Methods to evaluate the toxicity of engineered nanomaterials for biomedical applications: a review. Environ. Chem. Lett. https://doi.org/10.1007/s10311-021-01280-1
Pergantis, S.A., Jones-Lepp, T.L., Heithmar, E.M., 2012. Hydrodynamic Chromatography Online with Single Particle-Inductively Coupled Plasma Mass Spectrometry for Ultratrace Detection of Metal-Containing Nanoparticles. Anal. Chem. 84, 6454–6462. https://doi.org/10.1021/ac300302j
Peters, R.J.B., Bouwmeester, H., Gottardo, S., Amenta, V., Arena, M., Brandhoff, P., Marvin, H.J.P., Mech, A., Moniz, F.B., Pesudo, L.Q., Rauscher, H., Schoonjans, R., Undas, A.K., Vettori, M.V., Weigel, S., Aschberger, K., 2016. Nanomaterials for products and application in agriculture, feed and food. Trends Food Sci. Technol. 54, 155–164. https://doi.org/10.1016/j.tifs.2016.06.008
Petersen, E.J., Bustos, A.R.M., Toman, B., Johnson, M.E., Ellefson, M., Caceres, G.C., Neuer, A.L., Chan, Q., Kemling, J.W., Mader, B., Murphy, K., Roesslein, M., 2019. Determining what really counts: modeling and measuring nanoparticle number concentrations. Environ. Sci. Nano 6, 2876–2896. https://doi.org/10.1039/C9EN00462A
Pitkänen, L., Striegel, A.M., 2016. Size-exclusion chromatography of metal nanoparticles and quantum dots. TrAC Trends Anal. Chem. 80, 311–320. https://doi.org/10.1016/j.trac.2015.06.013
Praetorius, A., Badetti, E., Brunelli, A., Clavier, A., Gallego-Urrea, J.A., Gondikas, A., Hassellöv, M., Hofmann, T., Mackevica, A., Marcomini, A., Peijnenburg, W., Quik, J.T.K., Seijo, M., Stoll, S., Tepe, N., Walch, H., von der Kammer, F., 2020. Strategies for determining heteroaggregation attachment efficiencies of engineered nanoparticles in aquatic environments. Environ. Sci. Nano 7, 351–367. https://doi.org/10.1039/C9EN01016E
Rakcheev, D., Philippe, A., Schaumann, G.E., 2013. Hydrodynamic Chromatography Coupled with Single Particle-Inductively Coupled Plasma Mass Spectrometry for Investigating Nanoparticles Agglomerates. Anal. Chem. 85, 10643–10647. https://doi.org/10.1021/ac4019395
Reed, R.B., Ladner, D.A., Higgins, C.P., Westerhoff, P., Ranville, J.F., 2012. Solubility of nano-zinc oxide in environmentally and biologically important matrices. Environ. Toxicol. Chem. 31, 93–99. https://doi.org/10.1002/etc.708
Robert, C., Gillard, N., Brasseur, P.-Y., Pierret, G., Ralet, N., Dubois, M., Delahaut, Ph., 2013. Rapid multi-residue and multi-class qualitative screening for veterinary drugs in foods of animal origin by UHPLC-MS/MS. Food Addit. Contam. Part A 30, 443–457. https://doi.org/10.1080/19440049.2012.751632
Roberts, J.R., McKinney, W., Kan, H., Krajnak, K., Frazer, D.G., Thomas, T.A., Waugh, S., Kenyon, A., MacCuspie, R.I., Hackley, V.A., Castranova, V., 2013. Pulmonary and Cardiovascular Responses of Rats to Inhalation of Silver Nanoparticles. J. Toxicol. Environ. Health A 76, 651–668. https://doi.org/10.1080/15287394.2013.792024
Selck, H., Handy, R.D., Fernandes, T.F., Klaine, S.J., Petersen, E.J., 2016. Nanomaterials in the aquatic environment: A European Union-United States perspective on the status of ecotoxicity testing, research priorities, and challenges ahead. Environ. Toxicol. Chem. 35, 1055–1067. https://doi.org/10.1002/etc.3385
Shi, L.-E., Li, Z.-H., Zheng, W., Zhao, Y.-F., Jin, Y.-F., Tang, Z.-X., 2014. Synthesis, antibacterial activity, antibacterial mechanism and food applications of ZnO nanoparticles: a review. Food Addit. Contam. Part A 31, 173–186. https://doi.org/10.1080/19440049.2013.865147
Shiller, A.M., Boyle, E., 1985. Dissolved zinc in rivers. Nature 317, 49–52. https://doi.org/10.1038/317049a0
Sivry, Y., Gelabert, A., Cordier, L., Ferrari, R., Lazar, H., Juillot, F., Menguy, N., Benedetti, M.F., 2014. Behavior and fate of industrial zinc oxide nanoparticles in a carbonate-rich river water. Chemosphere 95, 519–526. https://doi.org/10.1016/j.chemosphere.2013.09.110
Striegel, A.M., Brewer, A.K., 2012. Hydrodynamic Chromatography. Annu. Rev. Anal. Chem. 5, 15–34. https://doi.org/10.1146/annurev-anchem-062011-143107
Suhendra, E., Chang, C.-H., Hou, W.-C., Hsieh, Y.-C., 2020. A Review on the Environmental Fate Models for Predicting the Distribution of Engineered Nanomaterials in Surface Waters. Int. J. Mol. Sci. 21, 4554. https://doi.org/10.3390/ijms21124554
Sukhanova, A., Bozrova, S., Sokolov, P., Berestovoy, M., Karaulov, A., Nabiev, I., 2018. Dependence of Nanoparticle Toxicity on Their Physical and Chemical Properties. Nanoscale Res. Lett. 13, 44. https://doi.org/10.1186/s11671-018-2457-x
Suzuki, Y., Matsunaga, K., Yamashita, Y., 2021. Assignment of PM2.5 sources in western Japan by non-negative matrix factorization of concentration-weighted trajectories of GED-ICP-MS/MS element concentrations. Environ. Pollut. 270, 116054. https://doi.org/10.1016/j.envpol.2020.116054
Suzuki, Y., Sato, H., Hiyoshi, K., Furuta, N., 2012. Quantitative real-time monitoring of multi-elements in airborne particulates by direct introduction into an inductively coupled plasma mass spectrometer. Spectrochim. Acta Part B At. Spectrosc., Honoring Issue: A Collection of Papers on Plasma and Laser Spectrochemistry. Dedicated to Gary M. Hieftje on the occasion of his 70th birthday. 76, 133–139. https://doi.org/10.1016/j.sab.2012.06.001
Svendsen, C., Walker, L.A., Matzke, M., Lahive, E., Harrison, S., Crossley, A., Park, B., Lofts, S., Lynch, I., Vázquez-Campos, S., Kaegi, R., Gogos, A., Asbach, C., Cornelis, G., von der Kammer, F., van den Brink, N.W., Mays, C., Spurgeon, D.J., 2020. Key principles and operational practices for improved nanotechnology environmental exposure assessment. Nat. Nanotechnol. 1–12. https://doi.org/10.1038/s41565-020-0742-1
Tan, J., Liu, J., Li, M., El Hadri, H., Hackley, V.A., Zachariah, M.R., 2016. Electrospray-Differential Mobility Hyphenated with Single Particle Inductively Coupled Plasma Mass Spectrometry for Characterization of Nanoparticles and Their Aggregates. Anal. Chem. 88, 8548–8555. https://doi.org/10.1021/acs.analchem.6b01544
Tan, J., Yang, Y., El Hadri, H., Li, M., Hackley, V.A., Zachariah, M.R., 2019. Fast quantification of nanorod geometry by DMA-spICP-MS. The Analyst 144, 2275–2283. https://doi.org/10.1039/C8AN02250J
Tiede, K., Boxall, A.B.A., Tiede, D., Tear, S.P., David, H., Lewis, J., 2009. A robust size-characterisation methodology for studying nanoparticle behaviour in ‘real’ environmental samples, using hydrodynamic chromatography coupled to ICP-MS. J. Anal. At. Spectrom. 24, 964–972. https://doi.org/10.1039/B822409A
Titus, D., James Jebaseelan Samuel, E., Roopan, S.M., 2019. Chapter 12 - Nanoparticle characterization techniques, in: Shukla, A.K., Iravani, S. (Eds.), Green Synthesis, Characterization and Applications of Nanoparticles, Micro and Nano Technologies. Elsevier, pp. 303–319. https://doi.org/10.1016/B978-0-08-102579-6.00012-5
Tolaymat, T., El Badawy, A., Genaidy, A., Abdelraheem, W., Sequeira, R., 2017. Analysis of metallic and metal oxide nanomaterial environmental emissions. J. Clean. Prod. 143, 401–412. https://doi.org/10.1016/j.jclepro.2016.12.094
Tuoriniemi, J., Jürgens, M.D., Hassellöv, M., Cornelis, G., 2017. Size dependence of silver nanoparticle removal in a wastewater treatment plant mesocosm measured by FAST single particle ICP-MS. Environ. Sci. Nano. https://doi.org/10.1039/C6EN00650G
Vance, Marina E, Kuiken, T., Vejerano, E.P., McGinnis, S.P., Hochella, M.F., Rejeski, D., Hull, M.S., 2015. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J. Nanotechnol. 6, 1769–1780. https://doi.org/10.3762/bjnano.6.181
Vijayakumar, S., Malaikozhundan, B., Gobi, N., Vaseeharan, B., Murthy, C., 2016. Protective effects of chitosan against the hazardous effects of zinc oxide nanoparticle in freshwater crustaceans Ceriodaphnia cornuta and Moina micrura. Limnologica 61, 44–51. https://doi.org/10.1016/j.limno.2016.09.007
W. Raynor, M., D. Dawson, G., Balcerzak, M., G. Pretorius, W., Ebdon, L., 1997. Electrospray Nebulisation Interface for Micro-High Performance Liquid Chromatography–Inductively Coupled Plasma Mass Spectrometry. J. Anal. At. Spectrom. 12, 1057. https://doi.org/10.1039/a701593c
Wang, F., Guan, W., Xu, L., Ding, Z., Ma, H., Ma, A., Terry, N., 2019. Effects of Nanoparticles on Algae: Adsorption, Distribution, Ecotoxicity and Fate. Appl. Sci. 9, 1534. https://doi.org/10.3390/app9081534
Wang, H., Dong, Y., Zhu, M., Li, X., Keller, A.A., Wang, T., Li, F., 2015. Heteroaggregation of engineered nanoparticles and kaolin clays in aqueous environments. Water Res. 80, 130–138. https://doi.org/10.1016/j.watres.2015.05.023
Warwick, C., Guerreiro, A., Soares, A., 2013. Sensing and analysis of soluble phosphates in environmental samples: A review. Biosens. Bioelectron. 41, 1–11. https://doi.org/10.1016/j.bios.2012.07.012
Wiedensohler, A., Fissan, H.J., 1991. Bipolar Charge Distributions of Aerosol Particles in High-Purity Argon and Nitrogen. Aerosol Sci. Technol. 14, 358–364. https://doi.org/10.1080/02786829108959498
Zarrin, F., Kaufman, S.L., Socha, J.R., 1991. Droplet size measurements of various nebulizers usingdifferential electrical mobility particle sizer. J. Aerosol Sci. 22, S343–S346. https://doi.org/10.1016/S0021-8502(05)80108-9
Zhou, X., Liu, J., Jiang, G., 2017. Elemental Mass Size Distribution for Characterization, Quantification and Identification of Trace Nanoparticles in Serum and Environmental Waters. Environ. Sci. Technol. 51, 3892–3901. https://doi.org/10.1021/acs.est.6b05539
Zuin, S., Gaiani, M., Ferrari, A., Golanski, L., 2013. Leaching of nanoparticles from experimental water-borne paints under laboratory test conditions. J. Nanoparticle Res. 16, 2185. https://doi.org/10.1007/s11051-013-2185-1