簡易檢索 / 詳目顯示

研究生: 蘇永順
Su, Yong-Shun
論文名稱: 利用流量數目估算和佇列長度回授控制之佇列管理機制
Queue Management with Flow Number Estimation and Queue Length Feedback Control
指導教授: 李忠憲
Li, Jung-Shian
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 71
中文關鍵詞: 佇列管理
外文關鍵詞: NRED, queue management
相關次數: 點閱:58下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在近幾年來,許多主動佇列管理如早期隨機偵測 (RED)、BLUE、REM、SRED和DRED針對IP路由器而被提出來,我們使用2k的因子設計來評估佇列管理的參數在效能上的影響,在這個步驟和情況參數設定下,流量數目和Pmax是影響早期隨機偵測佇列管理兩個主要的因素;然後,我們基於Bloom濾波器和控制定理下,提出一個使用動態流量估計和佇列長度回授控制的一種新的主動佇列管理-NRED,在這個NRED運作下,他的佇列長度波動小於任一現存的佇列管理機制;特別地,NRED在當一堆資料流同時加入競爭的行列時,也能夠很快速的使佇列長度穩定下來。因此,NRED能極適用現今多變的網路環境中,而且延遲的變異程度也能被NRED控制得非常小。

    Many active queue management schemes such as Random Early Detection (RED) [3] [4], BLUE [2], Random Exponential Marking (REM) [5], Stabilized RED (SRED) [7], and Dynamic RED (DRED) [8] were proposed for IP routers in recent years. We evaluate the effects of parameters of queue management on the performance using 2k factorial designs. Among these systematic and environmental parameters, number of flows and Pmax are two dominate factors affecting the performance of RED queue management. Then, we propose a novel active queue management scheme, NRED, employing active flow-number estimation and queue length feedback control, which are motivated from Bloom filter and control theory, respectively. Fluctuation of queue length under NRED is smaller than any existing queue management schemes. Especially, NRED can stabilize the queue length very fast even when a lot of flows join in the competition suddenly. NRED is very suitable to be deployed in today’s networks where hot spot frequently occurs. Furthermore, delay jitter regulated by NRED is very low.

    Abstract ii Acknowledgement iv Table of Contents v List of Figures vii List of Tables viii 1 Introduction 1 2 Related Works 4 2.1 Droptail 4 2.2 RED 5 2.3 BLUE 7 2.4 REM 8 2.5 SRED 9 2.6 DRED 10 3 Problem Evaluation 13 3.1 2k Factorial Designs 14 3.1.1 Our Factorial Designs and Experimental Topology 14 3.1.2 24 Factorial Designs and Analyses 15 3.2 Estimation of Number of Flows 17 3.3 Comparing with Prior AQM Schemes 19 3.4 Summary 21 4 NRED: RED with Flow Number Estimation and Queue Length Feedback control 22 4.1 RED with Number of Flows Estimator 22 4.1.1 Fluid Model 23 4.1.2 Steady-state Analysis 25 4.2 NRED with Queue Length Feedback Control 28 4.2.1 A Feedback Control Algorithm for Queue Length 28 4.2.2 Convergence of Feedback Control in NRED Compared with RED 32 5 Simulation Results 35 5.1 Configurations and Simulation Topology 35 5.2 Stability in Steady State 37 5.3 Convergence of Transient State 43 5.3.1 Disturbing time: 120 msec 43 5.3.2 Disturbing time: 300 msec 46 5.4 Number of Flows Varying with Time 48 5.4.1 Scenario I 49 5.4.2 Scenario II 51 5.4.3 Scenario III 54 5.5 RTT Issues 57 5.5.1 Setting of Round Trip Time 58 5.5.2 Effect of Inaccurate RTT 59 5.6 Multiple Congested Link 62 5.6.1 Case A: 3 NRED Congested Router 62 5.6.2 Case B: Park Lot 64 6 Conclusions 68 7 References 70

    [1] E. Hash. “Analysis of random drop for gateway congestion control,” Rep. LCS TR-465. Lab. for Comput. Sci.. M.I.T., 1989, p.103
    [2] W. Feng, D. Kandlur, D. Saha, K. Shin, “Blue: a new class of queue management algorithms,” U. Michigan CSE-TR-387-99, April 1999.
    [3] S. Floyed, and K. Fall, “Router mechanisms to support end-to-end congestion control,” Tech.rep, LBL, 1997. (http://www3nrg.ee.lbl.gov/nrg-thesiss.html.)
    [4] S. Floyed and V. Jacobson, “ Random early detection gateways for congestion avoidance” IEEE/ACM Transactions on Networking, vol. 1, Number 4, pp397-413, August 1993
    [5] Steven H. Low Sanjeewa Athuraliya, Victor H. Li and Qinghe Yin. REM: Active
    Queue Management. IEEE Network, 2001.
    [6] S. Athuraliya and S.H. Low. “Optimization Flow Control, II: Random Exponential Marking”, Submitted for publication, http://www.ee.mu.oz.au/staff/slow/research/, May 2000.
    [7] T. J. Ott, T. V. Lakshman, and L. H. Wong, “SRED: Stabilized RED”, Proc. IEEE INFOCOM’99, NY, March 21-25, 1999, pp. 1346-1355
    [8] J. Aweya, M. Ouellette, and D. Y. Montuno, “A Control Theoretic Approach to Queue management”, Published in Computer Networks Journal (Elsevier Science), Vol. 36, Issue 2-3, pp. 203-235, July 2001
    [9] B. Bloom. “Space/time Trade-offs in Hash Coding with Allowable Errors.” Communications of the ACM, 13(7), July 1970
    [10] D. Dutta A. Goel, and J. Heidemann. “Oblivious QUEUE MANAGEMENT and Nash Equilibrium.” In Proceeding of. The IEEE Infocom, 2003
    [11] http://www.isi.edu/nsnam/ns/
    [12] R. JAIN, “The Art of Computer Systems Performance Analysis: Techniques for Experimental Simulation, and Modeling,” p.275-390
    [13] V. Misra, W. B. Gong, and D. Towsley, “Fluid-based Analysis of a Network of QUEUE MANAGEMENT Routers Supporting TCP Flows with an Application to RED,” in Proc. IEEE INFOCOM, 2001.
    [14] V. Misra, W. B. Gong, and D. Towsley, “Stochastic Differential Equation Modeling and Analysis of TCP Windowsize Behavior. Technical Report ECE-TR-CCS-99-10-01, 1999 Istanbul. Available at ftp://gaia.cs.umass.edu/pub/Misra99-TCP-Stochastic.ps.gz
    [15] J.Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP throughput: A simple model and its empirical validation. In Proceedings of ACM/SIGCOMM, 1998
    [16] J. Aweya, M. Ouellette, and D. Y. Montuno, “A Load Adaptive mechanism for Buffer Management”, Published in Computer Networks Journal, Vol. 36, pp. 709-228, March 2001
    [17] M. Christiansen, K. Jeffay, D. Ott, and F. D. Smith, “Tuning RED for Web Traffic,” IEEE/ACM Transactions on Networking, vol. 9, NO. 3, 2001
    [18] [Online]. Available: http://www.aciri.org/floyed/REDparameters.txt
    [19] R. Morris, “Scalable TCP Congestion Control,” Proc. IEEE INFOCOM 2000, pp. 1176 – 1183
    [20] J. Aweya, M. Ouellette, D. Y. Montuno, and A. Chapman, “Enhancing TCP performance with a load-adaptive RED mechanism.” Published in Computer Networks Journal, Vol. 11, pp. 31-50, 2001

    下載圖示 校內:2004-07-14公開
    校外:2004-07-14公開
    QR CODE