簡易檢索 / 詳目顯示

研究生: 藍文浩
Lan, Wen-Hau
論文名稱: 利用衛星測高和潮位站資料評估北太平洋海水面之季節到年代際變化和趨勢
Assessment of seasonal-to-decadal variability and trends of regional sea level in the North Pacific Ocean using satellite altimetry and tide gauges
指導教授: 郭重言
Kuo, Chung-Yen
學位類別: 博士
Doctor
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 124
中文關鍵詞: 海水面上升海水面季節性聖嬰現象衛星測高潮位站
外文關鍵詞: Sea level rise, Seasonal sea level, ENSO, Satellite altimetry, Tide gauge
相關次數: 點閱:128下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,我們對於全球海水面上升的理解有著相當程度進展,相較之下,區域海水面變化卻知之甚少。本研究綜合分析1993–2015台灣周遭海水面變化,並且利用衛星測高與潮位站資料分析北太平洋海水面之季節至年代際變化與趨勢。計算成果顯示,潮位基準偏移與測站地表垂直變動改正對於利用潮位站資料估算海水面變化速率之影響最為顯著,改正影響量平均值分別為7.3 mm/yr與8.0 mm/yr,而海潮與逆氣壓改正影響量相對較小,分別占海水面上升速率的9%和14%。因此,若使用未經基準偏移和地表垂直變動改正的潮位站資料進行台灣周圍海水面變化速率估算,將造成嚴重誤差。估算之測站地表垂直變動顯示,西部地區測站呈現顯著下沉,其中箔子寮、東石和塭港潮位站每年約為24–31 mm下沉量,其原因為西南平原常被抽取大量地下水,導致地表逐漸下陷。由潮位站與衛星測高資料推估臺灣絕對海水面速率相當一致,1993–2015海水面上升速率皆為2.2 mm/yr,明顯低於全球海水面上升速率(3.2 mm/yr)。研究發現,近年來台灣地區海水面上升速率減緩與聖嬰-南方振盪和太平洋十年震盪現象有相關。比較近十年(2003–2012)衛星測高絕對海水面變化、重力反演和氣候實驗重力(Gravity Recovery and Climate Experiment, GRACE)衛星海水質量、溫鹽比容海水面變化可知,台灣東北海域比容海水面與海洋質量變化對於海水面上升貢獻量相似(分別貢獻約–4.9 mm/yr至–2.2 mm/yr與1.9 mm/yr),而東南海域之比容海水面與海洋質量變化分別約占海水面上升的62%–74% (8.3–9.9 mm/yr)與14% (1.8 mm/yr); 而台灣西部溫度與鹽度觀測量較為稀少,導致計算之比容海水面精度較差。由此可知,臺灣東南部海水面上升主要是由比容海水面所驅動。
    利用1993–2016潮位站和衛星測高資料分析北太平洋海水面之年際間至年代際變化和上升趨勢。以衛星測高估算之西北和東北太平洋絕對海水面上升速率分別為3.3 ± 0.2 mm/yr 和2.3 ± 0.2 mm/yr,與潮位站資料推估之海水面上升速率(3.7 mm/yr 和 2.3 mm/y)非常相似。測高與潮位站資料推估整個北太平洋海水面速率為2.8–3.3 mm/yr,結果約略等於全球平均速率值3.2 mm/yr。當考慮聖嬰現象和太平洋年代際振盪影響時,估算之絕對海水面上升速率在各海域則較為一致(0–5 mm/yr),速率約為2.9 ± 0.1 mm/yr。此外,以總體經驗模態分解法分析1950–2016潮位站和1993–2016衛星測高資料之季節性變化,其成果顯示,在西太平洋邊緣海域,季節性變化占月平均海水面變化之60%–93%,然而在大部分開放海洋中占不到40%。在西北太平洋邊緣海域、加利福尼亞灣、東太平洋熱帶以及黑潮延伸等區域發現了顯著的年週期振幅,振幅範圍為100–211 mm,而在北太平洋半年週期振幅相對較小。另外,逆氣壓效應和比容海水面對於海水面季節性貢獻量亦被評估,逆氣壓效應在西太平洋沿岸地區(從南海北部到日本海)產生–116–88 mm的年週期振幅,而在其他區域逆氣壓效應影響量相對較低。比容海水面在日本海和黑潮延伸海域年週期振幅非常顯著,最大值為15 cm。自海水面變化中移除比容海水面後,開闊海域海水面年週期振幅顯著下降,但在大陸棚等邊緣海域,剩餘海水面的年周期振幅仍然顯著。大部分邊緣海域和東太平洋赤道海域之剩餘海水面年周期與風力因子高度相關。我們推估風力因子對北太平洋邊緣海域之海水面季節性變化影響相當顯著。

    A considerable progress is observed in understanding a global mean sea level rise, but regional sea level variations that deviate from a global average rate remain poorly understood. In this study, we present a comprehensive analysis of sea level data around Taiwan from 1993 to 2015 and an analysis of seasonal-to-decadal variability and trends of regional sea level in the North Pacific Ocean using satellite altimetry and tide gauges. Results show that datum shifts and vertical land motions in gauge records have significant impacts on sea level trends with respective average contributions of 7.3 and 8.0 mm/yr, whereas ocean tides and inverted barometer effects, which represent 9% and 14% of the observed trend, respectively, have relatively minor impacts. Thus, datum shifts and vertical land motion effects must be removed in the tide gauge records for accurate sea level estimates. The estimated land motions show that the southwestern plain in Taiwan has large subsidence rates. For example, the Boziliao, Dongshi, and Wengang tide gauge stations exhibit a rate of 24–31 mm/yr as a result of groundwater pumping. The absolute sea level trends, which are derived from the tide gauges or satellite altimetry, around Taiwan agree well with each other and both are estimated to be 2.2 mm/yr for 1993–2015. This estimate is significantly lower than the global average sea level rise trend of 3.2 mm/yr from satellite altimeters. We suggest that a recent hiatus in sea level rise in this region exhibits good agreement with the interannual and decadal variabilities associated with the El Niño-Southern Oscillation and Pacific Decadal Oscillation. The results of sea level budget show that steric sea level and ocean mass components contribute to the total absolute sea level in Northeast Taiwan at a similar rate (approximately –4.9 mm/yr to –2.2 mm/yr and 1.9 mm/yr, respectively) but contribute approximately 62%–74% (8.3 mm/yr to 9.9 mm/yr) and 14% (1.8 mm/yr) in Southeast Taiwan, correspondingly. In the western ocean of Taiwan, the temperature and salinity data are lacking; thus, the estimated steric sea level is inaccurate.
    Interannual-to-decadal variability and trends of sea level in the North Pacific Ocean are analyzed using tide gauge and satellite altimeter data covering 1993–2016. The absolute sea level trends derived from satellite altimeter data in the Northwest and Northeast Pacific Ocean are estimated to be 3.3 ± 0.2 mm/yr and 2.3 ± 0.2 mm/yr, and the similar rates of absolute sea level rise (of 3.7 mm/yr and 2.3 mm/yr) are observed from all coastal tide gauge records covering the same time span, respectively. Over the entire North Pacific Ocean, the absolute sea level trends are 2.8–3.3 mm/yr from tide gauges and satellite altimetry, which are similar to the global average trend of 3.2 mm/yr. A similar average trend in the sea level of 2.9 ± 0.1 mm/yr is observed when considering the effects of the ENSO and PDO. Moreover, a uniform spatial distribution with a range of 0–5 mm/yr is detected. The seasonal sea level cycles in the North Pacific Ocean are explored using tide gauges in 1950–2016 and satellite altimeter data in 1993–2016 through Ensemble Empirical Mode Decomposition method. The seasonal cycle can explain 60%–93% of the sea level variability in the continental shelf of the Western Pacific Ocean while explaining less than 40% of the variance in the open ocean. Significant annual amplitudes are found in the regions of the continental shelf of the Western Pacific Ocean, Gulf of California, eastern tropical Pacific, and Kuroshio Extension, with a range of 100–211 mm. A semi-annual amplitude has a relatively minimal impact on the sea level variation in the North Pacific Ocean. The inverted barometer effect produces −116 mm to 88 mm of annual amplitudes in the Western Pacific coast regions, especially from the north of South China Sea to the Sea of Japan, whereas the annual amplitude in most area of study is lower. The significant annual amplitudes of steric component are found in the Sea of Japan and Kuroshio Extension region, wherein the largest value is 15 cm. The annual amplitude has significantly decreased in the open ocean after removing the steric component from the observed sea level. However, the annual cycle of the residual sea level in the large areas of marginal seas remains strong. Wind forcing is highly correlated with the residual seasonal sea level cycle in most areas of the marginal seas and the eastern tropical Pacific. Therefore, we suggest that wind forcing strongly influences the sea level changes in marginal seas of the North Pacific Ocean.

    中文摘要 I Abstract III 致謝 V Contents VI List of Tables IX List of Figures X Chapter 1 Introduction 1 1.1 Global Sea Level Rise from Satellite Altimetry and Tide Gauges 1 1.2 Causes for Regional Sea Level Changes 5 1.3 Thesis Outline 12 Chapter 2 Sea Level from Tide Gauges and Satellite Altimetry around Taiwan: Data Processing, Analysis and Results 14 2.1 Introduction 14 2.2 Data Sets 17 2.2.1 Tide Gauge Records 17 2.2.2 Satellite Altimetry 19 2.2.3 Climate Indices 20 2.3 Tide Gauge Processing 21 2.3.1 Ocean Tides 21 2.3.2 Atmospheric Pressure Loading 23 2.3.3 Datum Shifts in the Tide Gauge Records 24 2.3.4 Vertical Land Motion Derived from Altimetry and Tide Gauge Data 28 2.3.5 Estimate of Vertical Motion Using Altimetry and Tide Gauge Data by the adjustment 29 2.4 Results and Discussion 32 2.4.1 Impacts of Geophysical and Datum Shift Corrections on Sea Level Trends 32 2.4.2 Vertical Land Motion in Taiwan 34 2.4.3 Mean Sea Level around Taiwan: Trend and Interannual Variability 38 2.5 Chapter Summary 41 Chapter 3 Regional Sea Level Variations around Taiwan Inferred from Satellite Gravimetry, Altimetry, and In-situ Hydrographic Data 43 3.1 Introduction 43 3.2 Data Sets 44 3.2.1 Tide Gauges 44 3.2.2 Satellite Altimetry 48 3.2.3 Gravity Recovery and Climate Experiment 49 3.2.4 In-situ Hydrographical Data 50 3.3 Methodology 51 3.3.1 Multiple-variable Linear Regression 51 3.3.2 Sea Level Reconstruction Based on Empirical Orthogonal Functions 53 3.4 Sea Level Budget around Taiwan 55 3.5 Inter-annual-to-decadal Variability and Trends of Sea Level Changes around Taiwan 62 3.6 Regional Sea Level Reconstruction around Taiwan 64 3.7 Chapter Summary 66 Chapter 4 Seasonal-to-decadal Variability and Trends of Sea Level in the North Pacific Ocean 67 4.1 Introduction 67 4.2 Data Sets 69 4.3 Ensemble Empirical Mode Decomposition 75 4.4 Absolute Sea Level Linear Trends and Interannual and Decadal Fingerprints in the North Pacific Ocean 80 4.4.1 Absolute Sea Level Trends from A Six-parameter Regression Analysis 80 4.4.2 Absolute Sea Level Trends from Multiple-variable Linear Regression Analysis 82 4.4.3 Absolute Sea Level Trends from Multiple-variable Linear Regression Analysis with Lag Time Determination 85 4.4.4 Seasonal Sea level Cycle from Observations 87 4.4.4.1 Mean seasonal Sea level Cycle Derived from EEMD 87 4.4.4.2 IB Effect 95 4.4.4.3 Forcing of the Seasonal Cycle from the Steric Height 97 4.4.4.4 Forcing of the Seasonal Cycle from the Wind Stress 103 4.5 Chapter Discussion and Summary 105 Chapter 5 Conclusions and Future Work 108 5.1 Conclusions 108 5.2 Future Work 111 Reference 113

    1. Amante, C., and B.W. Eakins, 2009, ETOPO1 1 Arc Minute Global Relief Model: Procedures, Data Sources and Analysis, NOAA Technical Memorandum NESDIS NGDC-24.
    2. Amiruddin, A.M., I.D. Haigh, M.N. Tsimplis, F.M. Calafat, and S. Dangendorf, 2015, The seasonal cycle and variability of sea level in the South China Sea, Journal of Geophysical Research: Oceans, 120(8), 5490–5513, doi:10.1002/2015JC010923.
    3. Argus, D. F., and W. R. Peltier, 2010, Constraining models of postglacial rebound using space geodesy: A detailed assessment of model ICE-5G (VM2) and its relatives, Geophys. J. Int., 181, 697–723, doi:10.1111/j.1365-246X.2010.04562.x.
    4. Bindoff, N., J. Willebrand, V.Artale, A. Cazenave, J. Gregory, S. Gulev, K. Hanawa, C. Le Quéré, and Co-authors, 2007, Observations: Oceanic climate change and sea level. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller, Eds., Cambridge University Press, Cambridge, 385–432.
    5. Bjornsson, H., and S.A. Venegas, 1997, A manual for EOF and SVD analyses of climatic data, CCGCR Report, 97(1).
    6. Boe ́, J., A. Hall, and X. Qu, 2009, Deep ocean heat uptake as a major source of spread in transient climate change simulations, Geophys. Res. Lett., 36, doi:10.1029/2009gl040845.
    7. Calafat, F.M., and D.P. Chambers, 2013, Quantifying recent acceleration in sea level unrelated to internal climate variability, Geophys. Res. Lett., 40(14), 3661–3666, doi:10.1002/grl.50731.
    8. Calafat, F.M., D.P. Chambers, and M.N. Tsimplis, 2013, Inter-annual to decadal sea-level variability in the coastal zones of the Norwegian and Siberian Seas: The role of atmospheric forcing, J. Geophys. Res. Oceans, 118(3), 1287–1301, doi:10.1002/jgrc.20106.
    9. Cazenave, A., K. Dominh, F. Ponchaut, L. Soudarin, J.F. Crétaux, and C. Le Provost, 1999, Sea level changes from TOPEX-POSEIDON altimetry and tide gauges, and vertical crustal motions from DORIS, Geophys. Res. Lett., 26, 2077–2080, doi:10.1029/1999GL900472.
    10. Cazenave, A., K. Dominh, S. Guinehut, E. Berthier, W. Llovel, G. Ramillien, M. Ablain, and G. Larnicol, 2009, Sea level budget over 2003-2008: A reevaluation from GRACE space gravimetry, satellite altimetry and Argo, Glob. Planet. Chang., 65(1-2), 83-88, doi:10.1016/j.gloplacha.2008.10.004.
    11. Cazenave, A., and G. Le Cozannet, 2014, Sea-level rise and its coastal impacts, Earth's Future, 2, 15–34, doi:10.1002/2013EF000188.
    12. Cazenave, A., H.B. Dieng, B. Meyssignac, K. von Schuckmann, B. Decharme, and E. Berthier, 2014, The rate of sea-level rise, Nat. Clim. Change, 4(5), 358–361, doi:10.1038/nclimate2159.
    13. Chambers, D.P., 2006, Observing seasonal steric sea level variations with GRACE and satellite altimetry, J. Geophys. Res. Oceans, 111, doi:10.1029/2005jc002914.
    14. Chambers, D.P., J. Wahr, M.E. Tamisiea, and R.S. Nerem, 2010, Ocean mass from GRACE and Glacial Isostatic Adjustment, J. Geophys. Res., 115, doi: 10.1029/2010jb007530.
    15. Chang, E.T.Y., B.F. Chao, C.C. Chiang, and C. Hwang, 2012, Vertical crustal motion of active plate convergence in Taiwan derived from tide gauge, altimetry, and GPS data, Tectonophysics, 578, 98–106, doi:10.1016/j.tecto.2011.10.002.
    16. Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011, Global observations of nonlinear mesoscale eddies, Prog. Oceanogr., 91, 167–216, doi:10.1016/j.pocean.2011.01.002.
    17. Chen, K. H., M. Yang, Y. T.Huang, K. E. Ching, R. J. Rau, Vertical displacement rate field of Taiwan from geodetic levelling data 2000–2008, Surv. Rev., 43, 296–302, doi:10.1179/003962611X13055561708380.
    18. Cheng, X.H., S.P. Xie, Y. Du, J. Wang, X. Chen, and J. Wang, 2016a, Interannual-to-decadal variability and trends of sea level in the South China Sea, Clim. Dynam., 46(9), 3113–3126, doi:10.1007/s00382-015-2756-1.
    19. Cheng, Y.C., T. Ezer, B.D. Hamlington, 2016b, Sea Level Acceleration in the China Seas, Water, 8(7), doi:10.3390/w8070293.
    20. Cherniawsky, J.Y., M.G.G. Foreman, S.K. Kang, R. Scharroo, and A.J. Eert, 2010, 18.6-year lunar nodal tides from altimeter data, Cont. Shelf. Res., 30, 575–587, doi:10.1016/j.csr.2009.10.002.
    21. Chicken, E., D.E. Loper, C.L. Werner, 2007, Estimating tidal effects in spring discharge: A multiscale method using correlated phenomena, Water Resour. Res., 43, doi:10.1029/2006WR005117.
    22. Ching, K. E. M.L. Hsieh, K. M. Johnson, K.H. Chen, R.J. Rau, and M. Ying, 2011, Modern vertical deformation rates and mountain building in Taiwan from precise leveling and continuous GPS observations, 2000–2008. J. Geophys. Res., 116, doi:10.1029/2011JB008242.
    23. Christiansen, B., T. Schmith, and P. Thejll, 2010, A surrogate ensemble study of sea level reconstructions, J. Clim., 23, 4306–4326.
    24. Church, J.A., N.J. White, R. Coleman, K. Lambeck, and J.X.Mitrovica, 2004, Estimates of regional distribution of sea-level rise over the 1950-2000 period, J. Clim., 17(13), 2609–2625, doi:10.1175/1520-0442(2004)017<2609:EOTRDO>2.0.CO;2.
    25. Church, J.A., and N.J. White, 2006, A 20th century acceleration in global sea-level rise, Geophys. Res. Lett., 33(1), doi: 10.1029/2005gl024826
    26. Church, J.A., N.J. White, T. Aarup, W.T. Wilson, P.L. Woodworth, C.M. Domingues, J.R. Hunter, and K. Lambeck, 2008, Understanding global sea levels: past, present and future, Sustain. Sci., 3(1), 9–22, doi:10.1007/s11625-008-0042-4.
    27. Church, J.A., and N.J. White, 2011, Sea-level rise from the late 19th to the Early 21st Century, Surv. Geophys., 32, 585–602, doi:10.1007/s10712-011-9119-1.
    28. Dalrymple, R.A., L.C. Breaker, B.A. Brooks, D.R. Cayan, G.B. Griggs, W. Han, B.P. Horton, C.L. Hulbe, J.C. McWilliams, and P.W. Mote, 2012, Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future, The National Academies Press: Washington, DC, USA, pp. 1–217.
    29. Dee, D.P., S.M. Uppala, A.J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M.A. Balmaseda, G. Balsamo, P. Bauer, et al., 2011, The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. R. Meteorol. Soc., 137, 553–597, doi:10.1002/qj.828.
    30. Dieng H.B., A. Cazenave, B. Messignac, O. Henry, K. von Schuckmann, and J.M. Lemoine, 2014, Effect of La Niña on the global mean sea level and north Pacific ocean mass over 2005–2011, J. Geodetic Sci., 4 19–27, doi:10.2478/jogs-2014-0003.
    31. Douglas, B.C., 2001, Sea-level change in the era of the recording tide gauge. In Sea Level Rise—History and Consequences, B.C. Douglas, M.S. Kearney, S.P. Leatherman, Eds., Academic Press: San Diego, CA, USA, 75, 37–64.
    32. Duan, X.J., J.Y. Guo, C.K. Shum, and W. van der Wal, 2009, On the postprocessing removal of correlated errors in GRACE temporal gravity field solutions, J. Geodesy, 83, 1095–1106, doi:10.1007/s00190-009-0327-0.
    33. Feng W., 2014, Regional terrestrial water storage and sea level variations inferred from satellite gravimetry, Earth Sciences, Universite Toulouse III Paul Sabatier.
    34. Feng, W., and M. Zhong, 2015, Global sea level variations from altimetry, GRACE and Argo data over 2005–2014, Geodesy and Geodynamics, 6 (4), 274–279, doi:10.1016/j.geog.2015.07.001.
    35. Feng, X., and M.N. Tsimplis, 2014, Sea level extremes at the coasts of China, J. Geophys. Res. Oceans, 119, 1593–1608, doi:10.1002/2013JC009607.
    36. Feng, X., M.N. Tsimplis, and P.L. Woodworth, 2015a, Nodal variations and long-term changes in the main tides on the coasts of China, J. Geophys. Res. Oceans, 120, 1215–1232, doi:10.1002/2014JC010312.
    37. Feng, X., M.N. Tsimplis, M. Marcos, F.M. Calafat, J. Zheng, G. Jordà, and P. Cipollini, 2015b, Spatial and temporal variations of the seasonal sea level cycle in the northwest Pacific, J. Geophys. Res. Oceans, 120(10), 7091–7112, doi:10.1002/2015JC011154
    38. Forget, G., and R.M. Ponte, 2015, The partition of regional sea level variability, Prog. Oceanogr., 137, 173–195, doi:10.1016/j.pocean.2015.06.002.
    39. Gill, A.E., 1982, Atmosphere-Ocean Dynamics, Academic Press, New York.
    40. Good, S.A., M.J. Martin, and N.A. Rayner, 2013, EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates, J. Geophys. Res. Oceans, 118(12), 6704–6716, doi:10.1002/2013JC009067.
    41. Guo, J.Y., X.J. Duan, and C.K. Shum, 2010, Non-isotropic Gaussian smoothing and leakage reduction for determining mass changes over land and ocean using GRACE data, Geophys. J. Int., 181(1), 290–302, doi:10.1111/j.1365-246X.2010.04534.x.
    42. Gouretski, V., and F. Reseghetti, 2010, On depth and temperature biases in bathythermograph data: Development of a new correction scheme based on analysis of a global ocean database, Deep-Sea Res. Pt. I, 57(6), 812–833, doi: doi.org/10.1016/j.dsr.2010.03.011.
    43. Haigh, I.D., T. Wahl, E.J. Rohling, R.M. Price, C.B. Pattiariatchi, F.M. Calafat, and S. Dangendorf, 2014, Timescales for detecting a significant acceleration in sea level rise, Nat. Commun., 5, doi:10.1038/ncomms4635.
    44. Hamlington, B.D., R.R. Leben, M.W. Strassburg, R.S. Nerem, and K.Y. Kim, 2013, Contribution of the Pacific Decadal Oscillation to global mean sea level trends, Geophys. Res. Lett., 40, 5171–5175, doi:10.1002/grl.50950.
    45. Hamlington, B.D., R.R. Leben, K.Y. Kim, R.S. Nerem, L.P. Atkinson, and P.R. Thompson, 2015, The effect of the El Niño-Southern Oscillation on U.S. regional and coastal sea level, J. Geophys. Res. Oceans, 120(6), 3970–3986, doi:10.1002/2014JC010602.
    46. Hamlington, B.D., P. Thompson, W. C. Hammond, G. Blewitt, and R. D. Ray, 2016, Assessing the impact of vertical land motion on twentieth century global mean sea level estimates, J. Geophys. Res. Oceans, 121(7), 4980–4993, doi:10.1002/2016JC011747.
    47. Henry, O., P. Prandi, W. Llovel, A. Cazenave, S. Jevrejeva, D. Stammer, B. Meyssignac, and N. Koldunov, 2012, Tide gauge-based sea level variations since 1950 along the Norwegian and Russian coasts of the Arctic Ocean: Contribution of the steric and mass components, J. Geophys. Res. Oceans, 117, doi:10.1029/2011JC007706.
    48. Holgate, S.J., A. Matthews, P.L. Woodworth, L.J. Rickards, M.E. Tamisiea, E. Bradshaw, P.R. Foden, K.M. Gordon, S. Jevrejeva, and J. Pugh, 2013, New Data Systems and Products at the Permanent Service for Mean Sea Level, J. Coastal Res., 29(3), 493-504, doi:10.2112/JCOASTRES-D-12-00175.1.
    49. Hosoda, S., T. Ohira, and T. Nakamura, 2008, A monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations, JAMSTEC Rep. Res. Dev., 8, 47–59.
    50. Huang, C.J., T.W. Hsu, and L.C. Wu, 2010, Technology Development on Sea Level Change Estimation by In-Situ and Satellite Data (2/2), Water Resources Agency, R.O.C.: Taichung, Taiwan, pp. 1–302. (In Chinese)
    51. Huang, N.E., Z. Shen, S.R. Long, M.C. Wu, E.H. Shih, Q. Zheng, C.C. Tung, and H.H. Liu, 1998, The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis, P. Roy. Soc. Lon. A Mat., 454, 903–995.
    52. Huang, N.E., M.L.C. Wu, S.R. Long, S.S.P. Shen, W.D. Qu, P. Gloersen, and K.L. Fan, 2003, A confidence limit for the empirical mode decomposition and Hilbert spectral analysis, P. Roy. Soc. Lon. A Mat., 459(2037), 2317–2345, doi:10.1098/rspa.2003.1123.
    53. Huang, Z.W., J.Y. Guo, C.K. Shum, J.K. Wan, J.B. Duan, H.S. Fok, and C.Y. Kuo, 2013, On the Accuracy of Glacial Isostatic Adjustment Models for Geodetic Observations to Estimate Arctic Ocean Sea-Level Change, Terr. Atmos. Ocean. Sci., 24(4), 471–490, doi:10.3319/TAO.2012.08.28.01(TibXS).
    54. Intergovernmental Panel on Climate Change (IPCC), 2007, Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., Cambridge Univ. Press, Cambridge, U. K.
    55. Intergovernmental Panel on Climate Change (IPCC) ,2013, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Summary for Policymakers, edited by L. Alexander et al., available at http://www.climatechange2013.org/images/uploads/WGIAR5-SPM_Approved27Sep2013.pdf.
    56. Ishii, M., and M. Kimoto, 2009, Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections, J. Oceanogr., 65, 287–299, doi:10.1007/s10872-009-0027-7.
    57. Jankowski, K. L., T. E. Törnqvist, and A. M. Fernandes, 2017, Vulnerability of Louisiana’s coastal wetlands to present-day rates of relative sea-level rise, Nat. Commun., 8, doi:10.1038/ncomms14792.
    58. Jevrejeva, S., J. Moore, A. Grinsted, and P. Woodworth, 2008, Recent global sea level acceleration started over 200 years ago?, Geophys. Res. Lett., 35(8), doi: 10.1029/2008GL033611.
    59. Kaplan, A, Y. Kushnir, M.A. Cane, and M.B. Blumenthal, 1997, Reduced space optimal analysis for historical data sets: 136 years of Atlantic sea surface temperatures, J. Geophys. Res. Oceans, 102, 27835–27860, doi:10.1029/97JC01734.
    60. Kaplan, A., Y. Kushnir, and M.A. Cane, 2000, Reduced space optimal interpolation of historical marine sea level pressure: 1854–1992, J. Clim., 13, 2987–3002.
    61. Kemp, A.C., B.P. Horton, J.P. Donnelly, M.E. Mann, M. Vermeer, and S. Rahmstorf, 2011, Climate related sea-level variations over the past two millennia, Proc. Natl. Acad. Sci., 108(27), 11017-11022, doi:10.1073/pnas.1015619108.
    62. Koch, K., 1999, Parameter Estimation and Hypothesis Testing in Linear Models, 2nd edition, Springer.
    63. Kohl, A., D. Stammer, and B. Cornuelle, 2007, Interannual to decadal changes in the ECCO global synthesis, J. Phys. Oceanogr., 37, 313–337, doi:10.1175/JPO3014.1.
    64. Kuo, C.Y., C.K. Shum, A. Braun, and J.X. Mitrovica, 2004,Vertical crustal motion determined by satellite altimetry and tide gauge data in Fennoscandia, Geophys. Res. Lett., 31, 4–7, doi:10.1029/2003GL019106.
    65. Kuo, C.Y., C.K. Shum, A. Braun, K.C. Cheng, and Y. Yi, 2008, Vertical Motion determined using Satellite Altimetry and tide Gauges, Terr. Atmos. Ocean. Sci., 19, 21–35, doi:10.3319/TAO.2008.19.1-2.21(SA).
    66. Kuo, C.Y., Y.J. Cheng, W.H. Lan, and H.C. Kao, 2015, Monitoring Vertical Land Motions in Southwestern Taiwan with Retracked Topex/Poseidon and Jason-2 Satellite Altimetry, Remote Sens., 7, 3808–3825, doi:10.3390/rs70403808.
    67. Lan, W.H., C.Y. Kuo, H.C. Kao, L.C. Lin, C.K. Shum, K.H. Tseng, and J.C. Chang, 2017, Impact of Geophysical and Datum Corrections on Absolute Sea-Level Trends from Tide Gauges around Taiwan, 1993–2015, Water, 9, doi:10.3390/w9070480.
    68. Landerer, F.W., J.H. Jungclaus, and J. Marotzke, 2008, El Niño–Southern Oscillation signals in sea level, surface mass redistribution, and degree-two geoid coefficients, J. Geophys. Res., 113, doi: 10.1029/2008JC004767.
    69. Leatherman, S.P., K. Zhang, and B.C. Douglas, Bruce, 2000, Sea level rise shown to drive coastal erosion, EOS Transactions, 81(6), 55–57, doi:10.1029/00EO00034.
    70. Leuliette, E.W., and L. Miller, 2009, Closing the sea level rise budget with altimetry, Argo, and GRACE, Geophys. Res. Lett., 36, doi:10.1029/2008gl036010.
    71. Lin, J., 2000, Correction of tide gauge measurements to absolute sea level by vertical motion solutions. Master Thesis, Columbus: Ohio State University.
    72. Little, C.M., R.M. Horton, R.E. Kopp, M. Oppenheimer, and S. Yip, 2015, Uncertainty in Twenty-First-Century CMIP5 Sea Level Projections, J. Clim., 28(2), 838–852, doi:10.1175/JCLI-D-14-00453.1.
    73. Liu X., Y. Liu, L. Guo, Z. Rong, Y. Gu, and Y. Liu, 2010, Interannual changes of sea-level in the two regions of East China Sea and different responses to ENSO, Global Planet. Chang., 72(3), 215–226, 10.1016/j.gloplacha.2010.04.00.
    74. Liu, W.C., and H.M Liu, 2014, Assessing the impacts of sea level rise on salinity intrusion and transport time scales in a tidal estuary, Taiwan, Water, 6, 324–344, doi:10.3390/w6020324.
    75. Llovel, W., A. Cazenave, P. Rogel, A. Lombard, and M.B. Nguyen, 2009, Two-dimensional reconstruction of past sea level (1950-2003) from tide gauge data and an Ocean General Circulation Model, Clim. Past, 5(2), 217–227.
    76. Llovel, W., S. Guinehut, and A. Cazenave, 2010, Regional and interannual variability in sea level over 2002-2009 based on satellite altimetry, Argo float data and GRACE ocean mass, Ocean Dynam., 60(5), 1193–1204, doi: 10.1007/s10236-010-0324-0.
    77. Lombard, A., D. Garcia, G. Ramillien, A. Cazenave, R. Biancale, J.M. Lemome, F. Flechtner, R. Schmidt, and M. Ishii, 2007, Estimation of steric sea level variations from combined GRACE and Jason-1 data, Earth Planet. Sc. Lett., 254, 194–202, doi:10.1016/j.epsl.2006.11.035.
    78. Mallat, S.G., 1989, Multiresolution approximations and wavelet orthonormal bases of L2(R), Trans. Am. Math. Soc., 315, 69–89, doi:10.2307/2001373.
    79. Mantua, N.J., S.R. Hare, Y. Zhang, J.M. Wallace, and R.C. Francis, 1997, A Pacific interdecadal climate oscillation with impacts on salmon production, Bull. Am. Meteorol. Soc., 78, 1069–1079, doi:10.1175/1520-0477(1997)078<1069:apicow>2.0.co;2.
    80. McGregor, S., A. Timmermann, M.H. England, O. Elison Timm, and A.T. Wittenberg, 2013, Inferred changes in El Niño–Southern Oscillation variance over the past six centuries, Clim. Past, 9(5), 2269–2284, doi:10.5194/cp-9-2269-2013.
    81. Merrifield, M.A., S.T. Merrifield, and G.T. Mitchum, 2009, An Anomalous Recent Acceleration of Global Sea Level Rise, J. Climate, 22(21), 5772–5781, doi:10.1175/2009jcli2985.1.
    82. Merrifield, M., et al., 2010, The Global Sea Level Observing System (GLOSS), paper presented at OceanObs’09, Eur. Space Agency, Venice, Italy, 21–25, Sep.
    83. Merrifield, M.A., P.R. Thompson, and M. Lander, 2012, Multidecadal sea level anomalies and trends in the western tropical Pacific. Geophys. Res. Lett, 39(13), doi:10.1029/2012GL052032.
    84. Meyssignac, B., M. Becker, W. Llovel, and A. Cazenave, 2012, An assessment of two-dimensional past sea level reconstructions over 1950–2009 based on tide-gauge data and different input sea level grids, Surv. Geophys., 33(5), 945–972, doi:10.1007/s10712-011-9171-x.
    85. Mitchum, G.T., R.S. Nerem, M.A. Merrifield, and W.R. Gehrels, 2010, Modern sea-levelchange estimates. Chapter 5 in Understanding Sea-Level Rise and Variability. J.A. Church, P.L. Woodworth, T. Aarup, and W.S. Wilson, Eds, Wiley-Blackwell, London, UK.
    86. Montgomery, R.B., 1940, Report on the work of G.T. Walker, Mon. Weather Rev., 68, 1–26.
    87. Nerem, R.S., D.P. Chambers, E.W. Leuliette, G.T. Mitchum, and B.S. Giese, 1999, Variations in global mean sea level associated with the 1997–1998 ENSO event: Implications for measuring long term sea level change, Geophys. Res. Lett., 26(19), 3005–3008, doi: 10.1029/1999GL002311.
    88. Nerem R.S., and G.T. Mitchum, 2002, Estimates of vertical crustal motion derived from differences of TOPEX/POSEIDON and tide gauge sea level measurements, Geophy Res Lett, 29, doi: 10.1029/2002GL015037.
    89. Nerem, R.S., B.D. Beckley, J.T. Fasullo, B.D. Hamlington, D. Masters, and G.T. Mitchum, 2018, Climate-change–driven accelerated sea-level rise detected in the altimeter era, Proc. Natl. Acad. Sci., doi:10.1073/pnas.1717312115.
    90. Nicholls, R.J., and A. Cazenave, 2010, Sea-level rise and its impact on coastal zones, Science, 328, 1517–1520.
    91. Palanisamy, H., 2016, Present day sea level: global and regional variations, Oceanography, Universite Toulouse III Paul Sabatier.
    92. Parker, B., 2005, Tides. In Encyclopedia of Coastal Science, Schwartz, M.L., Ed., Springer: Dordrecht, The Netherlands, pp. 987–996.
    93. Parker, B., 2007, Tidal Analysis and Prediction, NOAA Special Publication NOS COOPS 3. U.S. Department of Commerce, Silver Spring, pp. 1-378.
    94. Pattullo, J., W. Munk, R. Revelle, and E. Strong, 1955, The seasonal oscillation in sea level, J. Mar. Res., 14, 88–155.
    95. Peltier, W.R., D.F. Argus, and R. Drummond, 2015, Space geodesy constrains ice-age terminal deglaciation: The global ICE-6G_C (VM5a) model, J. Geophys. Res. Solid Earth, 120, 450–487, doi:10.1002/2014JB011176.
    96. Peng, D., H. Palanisamy, A. Cazenave, and B. Meyssignac, 2013, Interannual Sea Level Variations in the South China Sea Over 1950–2009, Mar. Geod., 36, 164–182, doi:10.1080/01490419.2013.771595.
    97. Permanent Service for Mean Sea Level (PSMSL), 2018, Tide Gauge Data, Retrieved 05 Mar 2018 from http://www.psmsl.org/data/obtaining/.
    98. Piton, V., and T. Delcroix, 2018, Seasonal and interannual (ENSO) climate variabilities and trends in the South China Sea over the last three decades, Ocean Sci. Discuss., doi: 10.5194/os-2017-104.
    99. Ponte, R.M., 2006, Low-frequency sea level variability and the inverted barometer effect, J. Atmos. Ocean. Technol., 23, 619–629, doi:10.1175/jtech1864.1.
    100. Qian, C., Z.H. Wu, C.B. Fu, and T.J. Zhou, 2010, On multi-timescale variability of temperature in China in modulated annual cycle reference frame, Adv. Atmos. Sci., 27(5), 1169–1182, doi:10.1007/s00376-009-9121-4.
    101. Qiu, B., 2003, Kuroshio Extension Variability and Forcing of the Pacific Decadal Oscillations: Responses and Potential Feedback, J. Phys. Oceanogr., 33(12), 2465–2482, doi:10.1175/2459.1.
    102. Quinn, K.J., and R.M. Ponte, 2008, Estimating weights for the use of time-dependent gravity recovery and climate experiment data in constraining ocean models, J. geophys. Res. Oceans, 113, doi:10.1029/2008JC004903.
    103. Quinn, K.J., and R.M. Ponte, 2010, Uncertainty in ocean mass trends from GRACE, Geophys. J. Int., 181(2), 762–768, doi:10.1111/j.1365-246X.2010.04508.x.
    104. Rahmstorf, S., 2007, A Semi-Empirical Approach to Projecting Future Sea-Level Rise, Science, 315(5810), 368-370, doi:10.1126/science.1135456.
    105. Ray, R.D., B.D. Beckley, and F.G. Lemoine, 2010, Vertical crustal motion derived from satellite altimetry and tide gauges, and comparisons with DORIS measurements, Adv. Space Res., 45(12), 1510-1522, doi:10.1016/j.asr.2010.02.020.
    106. Ray, R.D., and B.C. Douglas, 2011, Experiments in reconstructing twentieth-century sea levels, Prog. Oceanogr., 91(4), 496–515, doi:10.1016/j.pocean.2011.07.021.
    107. Roemmich, D., G.C. Johnson, S. Riser, R. Davis, J. Gilson, W.B. Owens, S.L. Garzoli, C. Schmid, M. Ignaszewski, 2009, The Argo Program: Observing the global ocean with profiling floats, Oceanography, 22, 34–43, doi: 10.5670/oceanog.2009.36.
    108. Sanli, D.U., and G. Blewitt, 2001, Geocentric sea level trend using GPS and >100-year tide gauge record on a postglacial rebound nodal line, J. Geophys. Res., 106, 713–719, doi:10.1029/2000JB900348.
    109. Santamaría-Gómez A., M. Gravelle, X. Collilieux, M. Guichard, B. Martín Míguez, P. Tiphaneau, and G. Wöppelmann, 2012, Mitigating the effects of vertical land motion in tide gauge records using a state-of-the-art GPS velocity field, Global Planet. Change, 98–99, 6–17, doi:10.1016/j.gloplacha.2012.07.007.
    110. Shum, C.K., C.Y. Kuo, and J.Y. Guo, 2008, Role of antarctic ice mass balance in presentday sea-level change, Polar Science, 2(2), 149–161, doi:10.1016/j.polar.2008.05.004.
    111. Shum, C.K., and C.Y. Kuo, 2010, Observation and Geophysical Causes of Present-Day Sea-Level Rise, In Climate Change and Food Security in South Asia, R. Lal, M. Sivakumar, S.M.A. Faiz, A.H.M. Mustafizur Rahman, and K.R. Islam, eds, Springer Netherlands, 85-104.
    112. Steele, M., and W. Ermold, 2007, Steric sea level change in the Northern Seas, J. Climate, 20(3), 403–417, doi:10.1175/jcli4022.1.
    113. Strassburg, M.W., B.D. Hamlington, R.R. Leben, P. Manurung, J. Lumban Gaol, B. Nababan, S. Vignudelli, and K.Y. Kim, 2015, Sea level trends in Southeast Asian seas, Clim. Past, 11, 743–750, doi:10.5194/cp-11-743-2015.
    114. Tai, Y.L., 2013, Geocenter Variation derived by Satellite Laser Ranging and Satellite Altimetry, Department of Geomatics, National Cheng Kung University, Tainan, Taiwan.
    115. Torres, R.R., and M.N. Tsimplis, 2012, Seasonal sea level cycle in the Caribbean Sea, J. Geophys. Res. Oceans, 117(C7), doi:10.1029/2012JC008159.
    116. Tseng, Y.H., C.L. Breaker, and T.Y. Chang, 2010, Sea-level variations in the regional seas around Taiwan, J. Oceanogr., 66, 27–39, doi:10.1007/s10872-010-0003-2.
    117. Tsimplis, M.N., and P.L. Woodworth, 1994, The global distribution of the seasonal sea level cycle calculated from coastal tide gauge data, J. Geophys. Res., 99(C8), 16031–16039, doi:10.1029/94JC01115.
    118. van der Wal, W., E. Kurtenbach, J. Kusche, and L.L.A. Vermeersen, 2011, Radial and tangential gravity rates from GRACE in areas of glacial isostatic adjustment, Geophys. J. Int., 187, 797–812, doi:10.1111/j.1365-246X.2011.05206.x.
    119. Vinogradov, S.V., and R.M. Ponte, 2010, Annual cycle in coastal sea level from tide gauges and altimetry, J. Geophys. Res. Oceans, 115, doi:10.1029/2009JC005767.
    120. Volkov, D.L., and M.I. Pujol, 2012, Quality assessment of a satellite altimetry data product in the Nordic, Barents, and Kara seas, J. Geophys. Res. Oceans, 117, doi:10.1029/2011JC007557.
    121. Walker, G.T., 1923, Correlation in seasonal variations of weather, VIII: A preliminary study of world weather, Mem. Indian Meteorol. Dep., 24, 75–131.
    122. Wan, J.K., 2015, Joint Estimation of Vertical Land Motion and Global Sea-Level Rise over the Past Six Decades Using Satellite Altimetry and Tide Gauge Records, Geodetic Science, The Ohio State University, Columbus, Ohio, USA.
    123. Wang, G., X.Y. Chen, F.L. Qiao, Z.H. Wu, and N.E. Huang, 2010, On intrinsic mode function, Adv. in Adap. Data Analy., 2(3), 277–293, doi:10.1142/S1793536910000549.
    124. Wang, H.S., P. Wu, L.L. Jia, B. Hu, and L.M. Jiang, 2011, The role of glacial isostatic adjustment in the present-day crustal motion and sea levels of East Asia, Earth Planets Space, 63, 915–928, doi:10.5047/eps.2011.05.002.
    125. Wang, J., W. Gao, S. Xu, and L. Yu, 2012, Evaluation of the combined risk of sea level rise, land subsidence, and storm surges on the coastal areas of Shanghai, China, Climatic Change, 115, 537–558, doi: 10.1007/s10584-012-0468-7.
    126. Webster, P.J., G.J. Holland, and J.A. Curry, 2005, Changes in tropical cyclone number, duration, and intensity in a warming environment, Science, 16(309), 844–846, doi: 10.1126/science.1116448.
    127. White, N.J., I.D. Haigh, J.A. Church, T. Koen, C.S. Watson, T.R. Pritchard, P.J. Watson, R.J. Burgette, K.L. McInnes, Z.J. You, X. Zhang, and P. Tregoning, 2014, Australian sea levels: Trends, regional variability and influencing factors. Earth Sci. Rev., 136, 155–174, doi:10.1016/j.earscirev.2014.05.011.
    128. Willis, J.K., D.P. Chambers, and R.S. Nerem, 2008, Assessing the globally averaged sea level budget on seasonal to interannual timescales, J. Geophys. Res. Oceans, 113, doi:10.1029/2007jc004517.
    129. Willis, J.K., D.P. Chambers, C.Y. Kuo, and C.K. Shum, 2010, Global Sea Level Rise: Recent Progress and Challenges for the Decade to Come, Oceanography, 23, 26–35.
    130. Woodworth, P.L., 2006, Some important issues to do with long-term sea level change, Philos. Trans. R. Soc. A, 364, 787–803, doi:10.1098/rsta.2006.1737.
    131. Woodworth, P.L., F.N. Teferle, R.M. Bingley, I. Shennan, and S.D.P. Williams, 2009, Trends in UK mean sea level revisited, Geophys. J. Int., 176, 19–30, doi:10.1111/j.1365-246X.2008.03942.x.
    132. Woodworth, P.L., 2012, A Note on the Nodal Tide in Sea Level Records, J. Coast. Res., 28, 316–323, doi:10.2112/jcoastres-d-11a-00023.1.
    133. Wöppelmann, G., C. Letetrel, A. Santamaria, M.N. Bouin, X. Collilieux, Z. Altamimi, S.D.P. Williams, and B. Martin Miguez, 2009, Rates of sea-level change over the past century in a geocentric reference frame, Geophys. Res. Lett., 36, doi:10.1029/2009GL038720.
    134. Wöppelmann, G., and M. Marcos, 2012, Coastal sea-level rise in southern Europe and the nonclimate contribution of vertical land motion, J. Geophys. Res, 117, doi:10.1029/2011jc007469.
    135. Wöppelmann, G., and M. Marcos, 2016, Vertical land motion as a key to understanding sea level change and variability, Rev. Geophys., 54(1), 64–92, doi:10.1002/2015RG000502.
    136. Wu, Z.H., and N.E. Huang, 2004, A study of the characteristics of white noise using the empirical mode decomposition method, Proc. R. Soc. Lond. A.,460, 1597–1611, doi: 10.1098/rspa.2003.1221.
    137. Wu, Z.H., E.K. Schneider, B.P. Kirtman, E.S. Sarachik, N.E. Huang, and C.J. Tucker, 2008, The modulated annual cycle: an alternative reference frame for climate anomalies, Clim. Dyn., 31(7), 823-841, doi:10.1007/s00382-008-0437-z.
    138. Wu, Z.H., and N.E. Huang, 2009, Ensemble empirical mode decomposition: a noise-assisted data analysis method, Adv. in Adap. Data Analy., 1(1), 1–41, doi:10.1142/S1793536909000047.
    139. Wu, Z.H., and N.E. Huang, 2010, On the filtering properties of the empirical mode decomposition, Adv. in Adap. Data Analy., 2(4), 397–414, doi:10.1142/S1793536910000604.
    140. Wu, Q.R., X.B. Zhang, J.A. Church, and J.Y. Hu, 2017, Variability and change of sea level and its components in the Indo-Pacific region during the altimetry era, J. Geophys. Res. Ocean., 122(3), 1862–1881, doi:10.1002/2016JC012345.
    141. Wunsch, C., 1972, Bermuda sea-level in relation to tides, weather and baroclinic fluctuations, Geophys. Space Phys., 10, 1–49, doi:10.1029/RG010i001p00001.
    142. Wunsch, C., and D. Stammer, 1997, Atmospheric loading and the oceanic “inverted barometer” effect, Rev. Geophys., 35, 79–107, doi:10.1029/96RG03037.
    143. Yen, J.Y., C.H. Lu, C.P. Chang, A.J. Hooper, Y.H. Chang, W.T. Liang, T.Y. Chang, M.S. Lin, and K.S. Chen, 2011, Investigating active deformation in the northern Longitudinal Valley and City of Hualien in eastern Taiwan using persistent scatterer and small-baseline SAR interferometry, Terr. Atmos. Ocean. Sci., 22, 291–304, doi:10.3319/tao.2010.10.25.01(tt).
    144. Yi, S., W. Sun, K. Heki, and A. Qian, 2015, An increase in the rate of global mean sea level rise since 2010, Geophys. Res. Lett., 42(10), 3998–4006, doi:10.1002/2015GL063902.
    145. Yildiz, H., O.B. Andersen, M. Simav, B. Aktug, and S. Ozdemir, 2013, Estimates of vertical land motion along the southwestern coasts of Turkey from coastal altimetry and tide gauge data, Adv. Space Res., 51, 1572–1580, doi:10.1016/j.asr.2012.11.011.
    146. Yuill, B., D. Lavoie, and D.J. Reed, 2009, Understanding Subsidence Processes in Coastal Louisiana, J. Coastal Res., 23–36, doi:10.2112/si54-012.1.
    147. Zhang, X., and J.A. Church, 2012, Sea-level trends, interannual and decadal variability in the Pacific Ocean, Geophys. Res. Lett., 39(21), doi:10.1029/2012gl053240.
    148. Zhang, Y., J.M. Wallace, and D.S. Battisti, 1997, ENSO-like interdecadal variability: 1900–93, J. Clim., 10, 1004–1020, doi:10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    下載圖示 校內:2023-07-01公開
    校外:2023-07-01公開
    QR CODE