簡易檢索 / 詳目顯示

研究生: 謝其昀
Hsieh, Chi-Yun
論文名稱: 基於模糊可調式進給率之輪廓誤差控制系統設計與實現
Design and Implementation of Contour Error Control Systems based on Fuzzy Adjustable Feedrate
指導教授: 鄭銘揚
Cheng, Ming-Yang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 91
中文關鍵詞: 輪廓誤差插值器模糊邏輯
外文關鍵詞: NURBS
相關次數: 點閱:65下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   如何降低輪廓誤差一直是循跡控制的重要課題,而目前用於降低輪廓誤差的方法可以分成二類:第一類為設計輪廓誤差控制器,藉此控制器來得到輪廓誤差的補償量,再利用此補償量以降低輪廓誤差。第二類為利用調變進給率的方式,以使得在輪廓誤差較大之處能夠降低進給率,進而達到減少輪廓誤差的目的。
    根據上述二類降低輪廓誤差的方法,本論文將實現以下三點:1). 基於改良式切線輪廓誤差估測法來設計輪廓誤差控制器,以降低在任意曲線循跡問題之輪廓誤差。2). 利用模糊邏輯的方式,根據輪廓誤差的大小來決定適當進給率以控制輪廓誤差於設定之邊界內。3). 最後將上述兩點結合,合成一套輪廓誤差控制系統,以進一步地降低輪廓誤差並使其保持於設定之邊界內。
    本論文將使用NURBS曲線插值器來產生精確自由曲線位置命令,並將所提出之方法實際運用於X-Y平台,以驗證其可行性。實驗結果顯示,將輪廓誤差控制系統加入X-Y平台之伺服系統後,確實可使圓形軌跡之輪廓誤差保持於15um左右,並使凸輪軌跡之輪廓誤差保持於20um左右。

     Reducing contour error is an important topic of contour following applications. This study conducts an in-depth investigation on this issue. In addition, an integrated control scheme is proposed to reduce contour error. In this paper, we have accomplished the following: 1). Based on the modified-tangent contour error method, a contour error controller was designed to reduce the contour error of an arbitrary curve following task. 2). According to the estimated contour error, a fuzzy logic based feedrate regulator was designed to determine a suitable feedrate in real time. 3).By integrating the contour error controller and the fuzzy logic based feedrate regulator, a contour error control system was developed to keep the contour error within a given range. In the experiments, the NURBS interpolator was employed to produce a precise position command, and an X-Y table was used to evaluate the performance of the proposed approach.

    中文摘要 I 英文摘要 II 致謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1-1 研究動機與目的………………………………………1 1-2 文獻回顧………………………………………………3 1-3 本文架構………………………………………………7 第二章 輪廓誤差之求法 8 2-1 直線命令軌跡之輪廓誤差求…………………………8 2-2 圓弧命令軌跡之輪廓誤差求法………………………9 2-3 自由曲線命令軌跡之輪廓誤差估測法………………10 2-3-1 幾何近似輪廓誤差估測法…………………………10 2-3-2 等效切線輪廓誤差估測法…………………………12 2-3-3 改良式切線輪廓誤差估測法………………………15 2-4 改良式切線輪廓誤差估測法之準確度討論…………19 第三章 交叉耦合控制器 25 3-1 原始交叉耦合控制器…………………………………25 3-2 變動交叉耦合增益之交叉耦合控制器………………27 3-3 基於等效切線輪廓誤差估測法之交叉耦合控制器…29 3-4 新型交叉耦合控制器…………………………………30 第四章 基於模糊邏輯之進給率調節器設計 33 4-1 進給率與輪廓誤差之關聯性…………………………33 4-2 基於命令軌跡曲率之進給率調變法…………………34 4-3 模糊邏輯進給率調節器之設計………………………38 4-3-1 模糊控制器簡介……………………………………38 4-3-2 模糊邏輯進給率調節器……………………………44 4-4 輪廓誤差控制系統……………………………………47 第五章 實驗設備、實驗設定及實驗結果 48 5-1 實驗設備………………………………………………48 5-2 實驗設定………………………………………………50 5-2-1 命令軌跡之給定……………………………………50 5-2-2 進給率之給定………………………………………52 5-3 實驗結果………………………………………………54 第六章 結論與建議 88 參考文獻……………………………………………………89

    [1] Y. Koren, “Cross-Coupled Biaxial Computer for Manufacturing Systems,” ASME Journal of Dynamic System, Measurement and Control, Vol. 102, No. 4, pp.265-272, 1980.
    [2] Y. Koren and C.-C. Lo, “Variable-Gain Cross-Coupling Controller for Contour-
    ing,” Annals of the CIRP, Vol. 40, pp 371-374, 1991.
    [3] P. Kularni and K. Srinivasan, “Crossed-Coupled Control of Biaxial Feed Drive Servomechanisms,” ASME Journal of Dynamic System, Measurement and Control, Vol. 112, No. 2, pp.225-232, 1990.
    [4] S.-S. Yeh and P.-L. Hsu, “Theory and Applications of the robust Cross-Coupled Control Design,” ASME Journal of Dynamic System, Measurement and Control, Vol. 121, pp.524-529, 1999.
    [5] S.-S. Yeh and P.-L. Hsu, “A New Approach to Biaxial Cross-coupled Control,” in Proceedings of the 2000 IEEE International Conference on Control Applications,
    pp. 168-173, September, 2000.
    [6] Y.-Y. Chang and P.-L. Hsu, “ The design of precise motion systems by applying both the advanced controllers and the interpolators,” in Proceedings of the 6th
    International Workshop on Advanced Motion Control, pp.240-245, March, 2000.
    [7] M. Tomizuka, “Zero Phase Error Tracking Algorithm for Digital Control,” ASME Journal of Dynamic System, Measurement and Control, Vol.109, pp. 65-68, 1987.
    [8] A. J. Crispin, L. Ibrani, G. E. Taylor, G. Waterworth, “High performance trajectory
    control using a neural network cross-coupling gain scheduler,” in Proceedings of the IEEE Interna- tional Conference on Electronics, Circuits and Systems , Vol 3, pp.333 - 336, Sept. 1998.
    [9] D. J. Shin, H. S. Ryu, U. Y. Huh, “Fuzzy logic control for the contouring accuracy of XY positioning system,” in Proceedings of the IEEE International Symposium on Industrial Electronics, Vol 2, pp.1248 - 1252, June, 2001.
    [10] Y.-T. Shin, C.-S. Chen, A.-C. Lee, “A novel cross-coupling control design for Bi-axis motion,” International Journal of Machine Tools & Manufacture 42, pp.1539-1548 ,2002.
    [11] M. Tomizuka and T.-C. Chiu, “Contouring Control of Machine Tool Feed Drive Systems: A Task Coordinate Frame Approach,” ASME Journal of Dynamic System, Measurement and Control, Vol.57~1, pp.503-510, 1995.
    [12] C.-C. Lo and C.-Y. Chung, “Tangential-Contouring Controller for Biaxial Motion Control,” ASME Journal of Dynamic System, Measurement and Control, Vol.121, pp.126-129, 1999.
    [13] H.-Y. Chuang and C.-H. Liu, “A model-referenced adaptive control strategy for improving contour accuracy of multi-axis machine tools,” Conference Record of the 1990 IEEE, Vol.2, pp.1539-1544, 1990
    [14] 郭銘仁, “高速銑削NURBS插補技術發展,” 碩士論文, 國立中正大學機械工程研究所, 八十八學年度。
    [15] S. Y. Dong and J. J. Gi, “Feedrate control of CNC machines by inverse mapping method,” in Proceedings of the IEEE International Symposium on Intelligent Control, pp.279-284, July, 2000.
    [16] H. C. Lee and G. J. Jeon, “Real-time compensation of two-dimensional contour error in CNC machine tools,” in Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp.623-628, 1999.
    [17] 李政謙, “基於改良式切線輪廓誤差之伺服控制器設計與實現,” 碩士論文, 國立成功大學電機工程研究所, 九十三學年度。
    [18] FANUC, FANUC AC Servo motor series parameter manual , 1994.
    [19] L. A. Zadeh, “Fuzzy set”, Information and Control, Vol. 8, pp.338-353, 1965.
    [20] L.A. Zadeh, “The concept of a linguistic variable and its application to approximate reasoning”, Memorandum ERL-M411 Berkely, October, 1973.
    [21] 張智星, MATLAB程式設計與應用, 2002.
    [22] TEXAS Instruments, TMS320 Float-Point DSP Optimizing C Compiler, 1991.
    [23] TEXAS Instruments, TMS320C3x C Source Debugger User’s Guide, 1991.
    [24] TEXAS Instruments, TMS320 C3x User’s Guide,1992.
    [25] National Instruments Corp., LabVIEW User Manual for Windows,1994.
    [26] National Instruments Corp., LabVIEW Code Interface Reference Manual,1994.
    [27] 惠汝生,自動量測系統-LabVIEW,全華科技圖書, 2002.
    [28] 工研院, PMC32韌體開發技術手冊Ver2.0, 2002.
    [29] 工研院,EPCIO-601-1使用手冊, 2002.
    [30] Mitsubishi,三菱泛用AC伺服馬達驅動器技術資料集.
    [31] Panasonic, AC伺服馬達驅動器MINAS-A系列操作說明書.
    [32] 郭洲成, “CNC 伺服控制器之NURBS 即時插值器設計與實現,” 碩士論文, 國立成功大學機械工程研究所, 八十八學年度。
    [33] L. Piegl, “On NURBS: A Survery,” IEEE Computer Graphics & Application, Vol.11, No. 1, pp.55-71, 1991.
    [34] M.-Y. Cheng, M.-C. Tsai, J.-C. Kuo, “Real-time NURBS command generators for CNC servo controllers,” International Journal of Machine Tools & Manufacture, Vol. 42, No.7, pp.801-813, 2002.
    [35] 鄭中緯,鄭銘揚,蔡明祺“即時參數式插值器之設計與實現,” 第18 屆機械工程會, 2001.
    [36] 鄭中緯, “運動控制之即時NURBS曲線及曲面插值器設計與實現,” 博士論文, 國立成功大學機械工程研究所, 九十二學年度。
    [37] 郭洲成,陳志豪,蔡明祺,“S-Curve 速度規劃應用於馬達定位控制,” 中國機械工程學會第十五屆全國學術研討會,成功大學,1998。
    [38] 孫嘉陽,蔡明祺,“精密運動控制器之前加減速設計與實現,” 自動控制研討會, 2002.
    [39] B.-C. Kuo, Automatic Control System , 7th edition , Prentice-Hall, 1995
    [40] J. Yen and R. Langari, Fuzzy Logic , Prentice-Hall, 1999
    [41] 李祖聖,高等模糊控制, 國立成功大學電機工程研究所上課講義

    下載圖示 校內:2008-07-19公開
    校外:2010-07-19公開
    QR CODE