| 研究生: |
高子洋 Kao, Tzu-Yang |
|---|---|
| 論文名稱: |
工業用機械手臂之阻抗控制研究 Study on Impedance Control of Industrial Manipulator |
| 指導教授: |
鄭銘揚
Cheng, Ming-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 工業用機械手臂 、機械手臂系統動態模型 、外力估測 、順應控制 、阻抗控制 |
| 外文關鍵詞: | Industrial Robot Manipulator, Robot Dynamic Model, Disturbance Observer, Compliant Control, Impedance Control |
| 相關次數: | 點閱:179 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著自動化科技之發展,工業用機械手臂的使用越來越多,而其運用也從單一性重複的工作,轉換為與人或環境有所交互作用之運作行為。本論文之主旨為開發工業用機械手臂之順應控制功能,並以順應控制中的阻抗控制為本論文研究之主要方向。為了使機械手臂與外界環境產生順應性,須取得機械手臂與外界環境的接觸力資訊,而外界接觸力取得的方式包括有感測器之量測以及外力估測法之估測,本論文同時使用此兩種得取外力之方法,並觀察其應用於阻抗控制中之優缺點。阻抗控制為機械手臂順應性產生的重要方法之一,除了一般阻抗方法之實現之外,也藉由位置內迴路的引入來增加其抗干擾之能力,以改善其循跡精度;另外還提出一可變阻抗控制,利用阻抗系數之調整,使得阻抗控制系統不論在碰撞前的循跡運動以及碰撞時的外界接觸力,都會有較好之效果。最後,本論文對於一般阻抗控制以及可變阻抗控制進行穩定性分析,得出一組抗控制參數之穩定性條件,可以用來進行阻抗參數調變時,判斷系統是否穩定之標準。
With the development of automation technology, more and more applications of industrial robot have appeared, and these applications have evolved over the past few years from simple and repetitive work to some tasks involving interaction with humans or the environment. This thesis is aimed at developing the compliant control of robot manipulators with impedance control as one kind of compliant control to be the main research focus in this thesis. In order to produce compliant motions between robot manipulators and the environment, it is necessary to get the information about the external force between robot manipulators and the environment. Using sensors and observers are two methods to attain the external force, both of them are used in this thesis to find their strengths and weaknesses in impedance control. Impedance control plays an important role to help the robot manipulator to produce compliant motion. In addition to the original impedance control scheme, an impedance control scheme with an inner position loop is used to reduce the effect of the disturbance and improve the accuracy of tracking. Additionally, a variable impedance control is proposed which provides the robotic system with good performance either before the interaction or during the interaction with the adjustment of impedance parameter. Finally, this thesis provides stability analysis to impedance control and variable impedance control, and obtains a stability condition which is able to ensure the stability of the system when the impedance parameters are adjusted.
[1] C. G. Atkeson, C. H. An, and J. M. Hollerbach, “Estimation of inertial parameters of manipulator loads and links,” Int. J. Robot. Res, vol. 5, no. 3, pp. 101-119, Sep. 1986.
[2] F. Caccavale, and P. Chiacchio, “Identification of dynamic parameters and feedforward control for a conventional industrial manipulator,” Control Eng. Practice, vol. 2, no. 6, pp. 1039-1050, Dec. 1994.
[3] J. Swevers, W. Verdonck, and J. D. Schutter, “Dynamic model identification for industrial robots,” IEEE Trans. Control Sys., vol. 27, no. 5, pp. 58-71, Sep. 2007.
[4] H. Koch, A. Konig , A. Weigl-Seitz, K. Kleinmann, and J. Suchy, “Multi sensor contour following with vision force and acceleration sensors for an industrial robot,” IEEE Trans. Inst. Meas., vol. 62, no. 2, pp. 268-280, Feb. 2013.
[5] F. Petit, A. Dietrich, and A. Albu-Schäffer, “Generalizing Torque Control Concepts: Using Well-Established Torque Control Methods on Variable Stiffness Robots,” IEEE Trans. Robot. Automat., vol. 22, no. 4, pp. 37-51, Dec. 2015.
[6] X. Dong, Z. Shaoguang, L. Xuerong, L. Min, and W. Hongxing, “Impedance control of robot manipulator with model reference torque observer,” in Proc. IEEE Conf. ICIEA, Melbourne, Australia, Jun. 2013, pp. 994-998.
[7] 陳昭仁, 基於觀測器之阻抗控制與被動式速度控制於手臂健身/復健裝置之應用,碩士論文,國立成功大學電機工程學系,2012。
[8] A. D. Luca, and R. Mattone, “Actuator failure detection and isolation using generalized momenta,” in Proc. IEEE Conf. Robot. Automat., Taipei, Taiwan, Sep. 2013, pp. 634-639.
[9] A. Calanca, R. Muradore, and P. Fiorini, “A Review of Algorithms for Compliant Control of Stiff and Fixed-Compliance Robots,” IEEE/ASME Trans.Mech., vol. 21, no. 2, pp. 613-624, Apr. 2016.
[10] S. Chiaverini, B. Siciliano, and L. Villani, “A survey of robot interaction control schemes with experimental comparison,” IEEE/ASME Trans.Mech., vol. 4, no. 3, pp. 273-285, Sep. 1999.
[11] J. D. Schutter, “A study of active compliant motion control methods for rigid manipulators based on a generic scheme,” in Proc. IEEE Conf. Robot. Automat., NC, USA, Mar. 1987, pp. 1060-1065.
[12] A. Calanca, and P. Fiorini, “Human-Adaptive control of series elastic actuators,” Rehabilitation Robotics and Human-Robot Interaction, vol. 32, no. 8, pp. 1301-1316, Jul. 2014.
[13] G. Wyeth, “Control issues for velocity sourced series elastic actuators,” in Proc. Australasian Conf. on Robot. Automat., 2006 , pp. 6-8.
[14] G. Wyeth, “Demonstrating the safety and performance of a velocity sourced series elastic actuator,” in Proc. IEEE Conf. Robot. Automat., CA, USA, May 2008, pp. 3642-3647.
[15] T. G. Sugar, “A novel selective compliant actuator,” Mechatronics, vol. 12, no.9, pp. 1157-1171, Nov. 2002.
[16] K. Kong, J. Bae, and M. Tomizuka, “Control of rotary series elastic actuator for ideal force-mode actuation in human-robot interaction applications,” IEEE/ASME Trans.Mech., vol. 14, no. 1, pp. 105-118, Feb. 2009.
[17] M. H. Raibert, and J.J. Craig, “Hybrid Position/Force Control of Manipulators,” Control of Robotic Devices, vol. 103, pp. 126-133, Jun. 1981.
[18] S. Chiaverini, and L. Sciavicco, “The Parallel Approach to ForcePosition Control of Robotic Manipulators,” IEEE Trans. Robot. Automat., vol. 9, no. 4, pp. 361-373, Aug. 1993.
[19] T. Yoshikawa, T. Sugie, and M. Tanaka, “Dynamic Hybrid Position/Force Control of Robot Manipulators-Controller Design and Experiment,” IEEE Trans. Robot. Automat., vol. 4, no. 6, pp. 699-705, Dec. 1988.
[20] D. Jeon, and M. Tomizuka, “Learning Hybrid Force and Position Control of Robot Manipulators,” IEEE Trans. Robot. Automat., vol. 9, no. 4, pp. 423-431, Aug. 1993.
[21] M. S. Ju, C. C. K. Lin, D. H. Lin, I. S. Hwang, and S. M. Chen, “A rehabilitation robot with force-position hybrid fuzzy controller: hybrid fuzzy control of rehabilitation robot,” IEEE Trans. Neural. Syst. Rehabil. Eng., vol. 13, no. 3, pp. 349-358, Sep. 2005.
[22] J. D. Schutter, “A study of active compliant motion control methods for rigid manipulators based on a generic scheme,” in Proc. IEEE Conf. Robot. Automat., NC, USA, Mar. 1987, pp. 1060-1065.
[23] J. T. Wen, and S. Murphy, “Stability analysis of position and force control for robot arms,” IEEE Trans. Automat. Control, vol. 36, no. 3, pp. 365-371, Mar. 1991.
[24] F. Dimeas, and N. Aspragathos, “Online stability in human-robot cooperation with admittance control,” IEEE Trans. Haptics, vol. 9, no. 2, pp. 267-278, Jan. 2016.
[25] N. Hogan, “Impedance control: An approach to manipulation: Part I, II, III,” J. Dyn. Sys., Meas., Control, vol. 107, pp. 303-313, Mar. 1985.
[26] J. Zhang, and C. C. Cheah, “Passivity and Stability of Human–Robot Interaction Control for Upper-Limb Rehabilitation Robots,” IEEE Trans. Robot., vol. 31, no. 2, pp. 233-245, Apr. 2015.
[27] C. Ott, A. A. Schaffer, A. Kugi, and G. Hirzinger, “On the Passivity-Based Impedance Control of Flexible Joint Robots,” IEEE Trans. Robot., vol. 24, no. 2, pp. 416-429, Apr. 2008.
[28] B. Heinrichs, N. Sepehri , and A.B. T. Trump, “Position-based impedance control of an industrial hydraulic manipulator,” in Proc. IEEE Conf. Robot. Automat., MN, USA, Aug. 2002, pp. 284-290.
[29] W. S. Lu, and Q. H. Meng, “Impedance control with adaptation for robotic manipulators,” IEEE Trans. Robot. Automat., vol. 7, no. 3, pp. 408-415, Jul. 1991.
[30] W. He, and Y. Dong, “Adaptive fuzzy neural network control for a constrained robot using impedance learning,” IEEE Trans. Neural Networks and Learning Sys., vol. PP, no. 99, pp. 1-13, Feb. 2017.
[31] Seul Jung, T. C. Hsia, and R. G. Bonitz, “Neural network impedance force control of robot manipulator,” IEEE Trans. Indus. Elect., vol. 45, no. 3, Jun. 1998.
[32] S. Jung, and T.C. Hsia, “Robust neural force control scheme under uncertainties in robot dynamics and unknown environment,” IEEE Trans. Indus. Elect., vol. 47, no. 2, pp. 403-412, Apr. 2000.
[33] C. Wang, Y. Li, S. S. Ge, and T. H. Lee, “Optimal critic learning for robot control in time-varying environments,” IEEE Trans. Neural Networks and Learning Sys., vol. 26, no.10, pp. 2301-2310, Jan. 2015.
[34] Y. Li, and S. S. Ge, “Impedance learning for robots interacting with unknown environments,” IEEE Trans. Control Sys. Tech., vol. 22, no. 4, pp. 1422-1432, Jul. 2014.
[35] S. H. Kang, M. Jin, and P. H. Chang, “A solution to the accuracy / robustness dilemma in impedance control,” IEEE/ASME Trans.Mech., vol. 14, no. 4, pp. 282-294, Mar. 2009.
[36] T. Valency, and M. Zacksenhouse, “Accuracy/Robustness dilemma in impedance control,” J. Dyn. Sys., Meas., Control , vol. 125, no.3, pp. 310-319, Jun. 2009.
[37] K. Kronander, and A. Billard, “Stability considerations for variable impedance control,” IEEE Trans. Robot., vol. 32, no. 5, pp. 1298-1305, Oct. 2016.
[38] F. Ferraguti, C. Secchi, and C. Fantuzzi, “A tank-based approach to impedance control with variable stiffness,” in Proc. IEEE Conf. ICRA., Karlsruhe, Germany, May 2013, pp. 4948-4953.
[39] T. Nanayakkara, A. Jiang, M. d. R. A. Fernández, H. Liu ; K.Althoefer , amd J. Bimbo, “Stable grip control on soft objects with time-varying stiffness,” IEEE Trans. Robot., vol. 32, no. 3, pp. 626-637, May 2016.
[40] N. Colonnese, and A. Okamura “Stability and quantization-error analysis of haptic rendering of virtual stiffness and damping,” J. Robot. Res., vol. 35, no. 9, pp. 1103-1120, Oct. 2015.
[41] T. Tsuji, and M. Kaneko, “Noncontact impedance control for redundant manipulators,” IEEE Trans. Sys. Man Cyber., vol. 29, no. 3, pp. 184-193, Mar. 1999.
[42] 莊閔皓,六軸工業用機械手臂之系統鑑別與順應控制研究,碩士論文,國立成功大學電機工程學系,2016。
[43] 胡智皓,選擇順應性裝配機械手臂之外力估測與順應控制研究,碩士論文,國立成功大學電機工程學系,2016。
[44] 鄒博年,自動鑽削之順應運動及力量伺服控制器設計與實作,碩士論文,國立臺灣科技大學機械工程系,2014。
[45] 林鈺翔,結合順應性控制之自動螺絲鎖附系統,碩士論文,國立臺北科技大學自動化科技研究所,2014。
[46] 許傑巽,一種機械手臂順應性控制與安全設計,碩士論文,國立交通大學電控工程研究所,2010。
[47] 林嵩豪,結合環境資訊之互動式機器人順應性控制,碩士論文,國立臺灣科技大學機械工程系,2011。
[48] 饒瑞隆,結合虛擬實境與機器人之遠端操控系統:順應性控制與實驗,碩士論文,國立交通大學電機與控制工程系,1999。
[49] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot modeling and control, Wiley, 2005.
[50] L. Sciavicco, and B. Siciliano, Modelling and Control of Robot Manipulators, Springer, 2000.
[51] 鄭宴維,六軸機械手臂運動之重力補償與平面避障研究,碩士論文,國立成功大學,2014。
[52] K. S. Fu, R.C. Gonzalez, and C.S.G. Lee, Robotics: control, sensing, vision, and intelligence, McGraw-Hill, Inc. New York, 1987.
[53] M. C. Tsai, E. C. Tseng, and M. Y. Cheng, “Design of a torque observer for detecting abnormal load,” Control Engineering Practice, vol. 8, no. 3, pp. 259-269, Mar. 2000.
[54] A. D. Luca, A.A. Schaffer, S. Haddadin, and G. Hirzinger, “Collision detection and safe reaction with the DLR-III lightweight manipulator arm,” in Proc. IEEE/RSJ Int. Conf. IRS, Beijing, China, Oct. 2006, pp. 1623-1630.
[55] http://www.directindustry.com/prod/abb-robotics/product-30265-169123.html
[56] http://new.abb.com/products/robotics/industrial-robots/irb-910sc
[57] http://yisheng88.machine365.com/general/d9567061.shtml
[58] http://cobotsguide.com/2016/06/kuka-iiwa/
校內:2022-07-31公開