| 研究生: |
黃建基 Huang, Jian-Ji |
|---|---|
| 論文名稱: |
有機發光二極體電極之研究 Investigation of the Electrodes in Organic Light Emitting Diodes |
| 指導教授: |
蘇炎坤
Su, Yan-Kuin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 有機發光二極體 、透明導電氧化物 、黑膜 、微共振腔效應 、相位移 |
| 外文關鍵詞: | phase shift, microcavity effect, DBR-like, black film, TCO, TEOLED, OLED |
| 相關次數: | 點閱:94 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研究於「有機發光二極體電極之研究」。文中主要分成三大部分:
(a)透明導電氧化物在陽極的應用; (b)週期性陽極(Al/Ni/Au)在有機上發光二極體的應用; (c)製作陰極黑膜可降低環境光進而提高對比度方面進行研究。
(a)透明導電氧化物在陽極的應用:
以射頻磁控共濺鍍系統研製透明電極氧化銦錫(ITO)及氧化銦錫:氧化鋅(IZTO)共濺鍍的薄膜之二極體特性比較。在室溫不退火處理條件下,IZTO在400 nm有最佳厚度,比ITO (400 nm)或是350 nm的最佳厚度都擁有較低的電阻率及較快的載子移動率。並針對IZTO薄膜在150,250,400 nm的不同厚度下對於有機發光二極體的影響比較結果,也是400 nm的厚度最好。經由ETFOS軟體模擬實驗結果,將實驗及模擬的光譜做匹配,可以快速校正有機層膜厚計的誤差,得到實驗室的膜厚計針對NPB材料會有約2倍的誤差。
(b)週期性陽極(Al/Ni/Au)在有機上發光二極體的應用:
首先在Al/Au陽極白光上發光元件製作中探討Al在70及80 nm對元件效能的影響,其中表面平整度影響反射率,及元件效能。在週期性陽極(Al/Ni/Au)1,2和3週期對上發光元件效率的影響上,我們發現週期性陽極有DBR-like的效果及微共振腔效果,其中2週期在反射率、光電特性及效率方面表現最佳,具有95.4 %的反射率,7.99 cd/A的效率,而1週期的效率有6.85 cd/A,3週期由於反射率降到85.9 %,且功函數降到4.54 eV,所以效率約5.07 cd/A。微共振腔效應的理論及金屬的相位移在上發光OLED的模擬驗證了我們的實驗結果,並經由精準計算金屬間的相位移對於光學長度及波長變化的影響。
(c)製作陰極黑膜可降低環境光進而提高對比度方面進行研究:
以雙週期Al/CuPc/Al/CuPc/Al黑膜在33.5 cd/m2的環境光照射下,有最低反射光約2.61 cd/m2。元件的對比率(CR)在無黑膜、單週及雙週期黑膜的值分別為82.5,267.1及958。證明保持CuPc總厚度在80 nm並增加一層極薄的Al在中間形成的雙週期結構可大大降低CR值使元件適合在戶外白天中提高螢幕對比度。
This dissertation is divided into three parts: (a) Transparent conductive oxide (TCO) films applications; (b) Periodic anode applications with Al/Ni/Au structures on top emitting organic light emitting diodes (TEOLEDs); (c) Black film for improving the contrast ratio of organic light emitting diodes.
(a) Transparent conductor oxide (TCO) films applications
A comparison between indium tin oxide (ITO) and ITO codoped zinc oxide (IZTO) is constructed using the rf magnetron co-sputtering system. The 400-nm-thickness IZTO film has low resistivity and high mobility compared with 350 and 400-nm-thicknesses ITO films. The effects of different IZTO thicknesses (150, 250 and 400 nm) on OLEDs are discussed. The 400-nm-thickness IZTO film exhibits superior performance. The effects of the organic layer thickness on the spectra by ETFOS are also discussed for NPB thickness calibration. A 2-fold error was identified.
(b) Periodic anode applications with the Al/Ni/Au structures on top emitting organic light emitting diodes (TEOLEDs)
When the Al/Au thickness is further increased to 80/5 nm, the top emitting brightness decreases to lower than those of 70/5 nm. The deposition time for Al/Au (80/5 nm) is longer than that for Al/Au (70/5 nm). The longer deposition time leads to a rougher surface. The rough surface leads to a decrease in luminance performance. The TEOLED current efficiency with Al/Au of 80/5 nm is therefore worse than that with Al/Au of 70/5 nm. The 2-pair (Al/Ni/Au/Ni/Au) anode with a reflectivity of 95.4% is better than that for 1 and 3-pair anodes. The optimum current efficiency with the 2-pair Ni/Au anode is increased up to 7.99 cd/A compared with the 1-pair Ni/Au anode (6.85 cd/A) and 3-pair Ni/Au anode (5.07 cd/A) due to the reduced work function of 4.54 eV. The phase shift on emitting light reflection into periodic ultra-thin metals plays an important role in determining the wavelength of a microcavity device. We demonstrated 1, 2, and 3 Ni/Au pairs upon Al as the anode for achieving a DBR-like structure. The phase shift also occurred in the interfaces of ultra-thin multilayer metals. The phase shifts were obtained from precisely calculated results using two mirror electrodes for three different pair anodes. From the experimental result, the measured wavelength peak values for 1, 2, and 3-pair were 520, 556, and 540 nm, respectively. This is in good agreement with the theoretical calculations for 1, 2, and 3-pairs at 516, 556, and 536 nm, respectively.
(c) Black film for improving the contrast ratio of organic light emitting diodes
A black film with double period metal-organic cathode structure (Al/CuPc/Al/CuPc/Al) was designed for reducing the cathode reflection and enhancing the contrast ratio (CR) in organic light emitting diodes (OLEDs). The contrast ratio are 82.5, 267.1, and 958 for without, single, and double periodic black films, respectively. The absorption and destructive interference effect caused by the copper-phthalocyanine (CuPc) and ultra thin aluminum (Al) periodic layers decrease the ambient light.
[1]. T. Minami, H. Sonohara, T. Kakumu, and S. Takata, “Highly Transparent and Conductive Zn2In2O5 Thin Films Prepared by RF Magnetron Sputtering,” Jpn. J. Appl. Phys. Vol. 34, pp. L971–L974 (1995).
[2]. T. Minami, T. Kakumu, and S. Takata, “Preparation of transparent and conductive In2O3-ZnO films by radio frequency magnetron sputtering,” J. Vac. Sci. Technol. A 14 (3), pp. 1704–1708 (1996).
[3]. T. Minami, T. Kakumu, K. Shimokawa, and S. Takata, “New transparent conducting ZnO–In2O3–SnO2 thin films prepared by magnetron sputtering,” Thin Solid Films, Vol. 317, pp. 318–321, Apr. (1998).
[4]. N. Naghavi, L. Dupont, C. Marcel, C. Maugy, B. Laïk, A. Rougier, C. Guéry, and J.M. Tarascon, “Systematic study and performance optimisation of transparent conducting indium-zinc oxides thin films,” Electrochimica Acta . Vol. 46, pp. 2007–2013 (2001).
[5]. H. Ma, J. S. Cho, and C. H. Park, “A study of indium tin oxide thin film deposited at low temperature using facing target sputtering system,” Surf. Coat. Technol. Vol. 153, pp. 131–137 (2002).
[6]. K. Tominaga, H. Fukumoto, K. Kondou, Y. Hayashi, K. Murai, T. Moriga, and I. Nakabayashi, “Al-impurity-doped transparent conductive oxide films of In2O3ZnO system,” Vacuum. Vol. 74, pp. 683–687 (2004).
[7]. H. Hara, T. Shiro, and T. Yatabe, “Optimization and Properties of Zn Doped Indium Oxide Films on Plastic Substrate,” Jpn. J. Appl. Phys., Vol. 43, pp. 745–749 (2004).
[8]. D. S. Liu, C. H. Lin, B. W. Huang, and C. C. Wu, “Electrical, Optical and Material Properties of ZnO-Doped Indium–Tin Oxide Films Prepared Using Radio Frequency Magnetron Cosputtering System at Room Temperature,” Jpn. J. Appl. Phys., Vol. 45, pp. 3526–3530 (2006).
[9]. D. C. Paine, E. Chason, E. Chen, D. Sparacin, and H.-Y. Yeom, “A Study of the Crystallization of Amorphous Indium (Tin) Oxide,” Mat. Res. Soc. Symp. Proc., Vol. 623, pp. 245 (2000).
[10]. Y. S. Jung, J. Y. Seo, D. W. Lee, and D. Y. Jeon, “Influence of DC magnetron sputtering parameters on the properties of amorphous indium zincoxide thin film,” Thin Solid Films, Vol. 445, pp. 63–71 (2003).
[11]. B. Yaglioglu, H. Y. Yeom, and D. C. Paine, “Crystallization of amorphous In2O3–10 wt % ZnO thin films annealed in air,” Appl. Phys. Lett., Vol. 86, pp. 261908 (2005).
[12]. T. Minami, H. Sonohara, T. Kakumu, and S. Takata, “Physics of very thin ITO conducting films with high transparency prepared by DC magnetron sputtering,” Thin Solid Films, Vol. 270, pp. 37–42 (1995).
[13]. B. H. Lee, I. C. Kim, S. W. Cho, and S. H. Lee, “Effect of process parameters on the characteristics of indium tin oxide thin film for flat panel display application,” Thin Solid Films, Vol. 302, pp. 25–30 (1997).
[14]. Y. W. Sun, J. Gospodyn, P. Kursa, J. Sit, R. G. DeCorby, and Y. Y. Tsui, “Dense and porous ZnO thin films produced by pulsed laser deposition,” Appl. Surf. Sci., Vol. 248, pp. 392–396 (2005).
[15]. M. Yamaguchi, A. I. Ektessabi, H. Nomura, and N. Yasui, “Characteristics of indium tin oxide thin films prepared using electron beam evaporation,” Thin Solid Films. Vol. 447, pp. 115–118 (2004).
[16]. C. Liu, T. Matsutani, T. Asanuma, and M. Kiuchi, “Structural, electrical and optical properties of indium tin oxide films prepared by low-energy oxygen-ion-beam assisted deposition,” Nucl. Instrum. Methods Phys. Res. B., Vol. 206, 348–352 (2003).
[17]. M. J. Alam, and D. C. Cameron, “Characterization of transparent conductive ITO thin films deposited on titanium dioxide film by a sol–gel process,” Surf. Coat. Technol. Vol. 142, pp. 776–780 (2001).
[18]. D. C. Park, H. C. Ko, S. Fujita, and S. Fujita, “Growth of InxGa1−xN thin films on indium tin oxide/glass substrates by RF plasma enhanced chemical vapor deposition,” Thin Solid Films, Vol. 338, pp. 9–12 (1999).
[19]. D. S. Liu, C. C. Wu, and C. T. Lee, “A Transparent and Conductive Film Prepared by RF Magnetron Cosputtering System at Room Temperature,” Jpn. J. Appl. Phys. Vol. 44, pp. 5119–5121 (2005).
[20]. J.-J. Ho, and C. Y. Chen, “Power Effects in Indium-Zinc Oxide Thin Films for OLEDs on Flexible Applications,” J. Electrochem. Soc. Vol. 152, pp. G57–G61 (2005).
[21]. H.-K. Kim, K.-S. Lee, and J. H. Kwon, “Transparent indium zinc oxide top cathode prepared by plasma damage-free sputtering for top-emitting organic light-emitting diodes,” Appl. Phys. Lett. Vol. 88, pp. 012103–012103-3 (2006).
[22]. G. Hu, B. Kumar, H. Gong, E. F. Chor, and P. Wu, “Transparent indium zinc oxide ohmic contact to phosphor-doped n-type zinc oxide,” Appl. Phys. Lett., Vol. 88, pp. 101901–101901-3 (2006).
[23]. Y. L. Wang, F. Ren, W. Lim, D. P. Norton, S. J. Pearton, I. I. Kravchenko, and J. M. Zavada, “Room temperature deposited indium zinc oxide thin film transistors,” Appl. Phys. Lett., Vol. 90, pp. 232103–232103-3(2007).
[24]. G. Gu, V. Bulovic, P. E. Burrows, S. R. Forrest, and M. E. Thompson, “Transparent organic light emitting devices,” Appl. Phys. Lett. Vol. 68, pp. 2606–2608 (1996).
[25]. G. Parthasarathy, P. E. Burrows, V. Khalfin, V. G. Kozlov, and S. R. Forrest, “A metal-free cathode for organic semiconductor devices,” Appl. Phys. Lett. Vol. 72, pp. 2138–2140 (1998).
[26]. L. S. Hung, and C. W. Tang, “Interface engineering in preparation of organic surface-emitting diodes,” Appl. Phys. Lett. Vol. 74, pp. 3209–3211 (1999).
[27]. G. Parthasarathy, C. Adachi, P. E. Burrows, and S. R. Forrest, “High-efficiency transparent organic light-emitting devices,” Appl. Phys. Lett. Vol. 76, pp 2128–2130 (2000).
[28]. L. S. Hung, C. W. Tang, M. G. Mason, P. Raychaudhuri, and J. Madathil, “Application of an ultrathin LiF/Al bilayer in organic surface-emitting diodes,” Appl. Phys. Lett. Vol. 78, pp. 544–546 (2001).
[29]. M.-H. Lu, J. S. Weaver, T. X. Zhou, M. Rothman, R. C. Kwong, M. Hack, and J. J. Brown, “High-efficiency top-emitting organic light-emitting devices,” Appl. Phys. Lett. Vol. 81, pp. 3921–3923 (2002).
[30]. S. Han, X. Feng, and Z. H. Lu, “Transparent-cathode for top-emission organic light-emitting diodes,” Appl. Phys. Lett. Vol. 82, pp. 2715–2717 (2003).
[31]. L. H. Smith, J. A. E. Wasey, and W. L. Barnes, “Light outcoupling efficiency of top-emitting organic light-emitting diodes,” Appl. Phy. Lett. Vol. 84, pp. 2986–2988 (2004).
[32]. Y. Li, L. W. Tan, X. T. Hao, K. S. Ong, and F. Zhua, “Flexible top-emitting electroluminescent devices on polyethylene terephthalate substrates,” Appl. Phy. Lett. Vol. 86, pp. 153508–153508-3 (2005).
[33]. S. Chen, Y. Zhao, G. Cheng, J. Li, C. Liu, and Z. Zhao, “Improved light outcoupling for phosphorescent top-emitting organic light-emitting devices,” Appl. Phy. Lett. Vol. 88, pp. 153517–153517-3 (2006).
[34]. Z. Wu, S. Chen, H. Yang, Y. Zhao, J. Hou and S. Liu, “Top-emitting organic light-emitting devices based on silicon substrate using Ag electrode,” Semicond. Sci. Technol. Vol. 19, pp. 1138–1140 (2004).
[35]. X. Zhu, J. Sun, X. Yu, M. Wong, and H. S. Kwok, “Investigation of Al- and Ag-Based Top-Emitting Organic Light-Emitting Diodes with Metal Oxides as Hole-Injection Layer,” Jpn. J. Appl. Phys. Vol. 46, pp. 1033–1036 (2007).
[36]. C. Qiu, H. Peng, H. Chen , Z. Xie, M. Wang and H. S. Kwok, “Top-Emitting OLED Using Praseodymium Oxide Coated Platinum as Hole Injectors,” IEEE Trans. Electron Devices. Vol. 51, pp. 1207–1210 (2004).
[37]. C. J. Lee, R. B. Pode, D. G. Moon, J. I. Han, N. H. Park, S. H. Baik and S. S. Ju, “On the problem of microcavity effects on the top emitting OLED with semitransparent metal cathode,” Phys. Stat. sol. (a). Vol. 201, pp. 1022–1028 (2004).
[38]. C. W. Chen, P. Y. Hsieh, H. H. Chiang, C. L. Lin, H. M. Wu and C. C. Wu, “Top-emitting organic light-emitting devices using surface-modified Ag anode,” Appl. Phy. Lett. Vol. 83, pp. 5127–5129 (2003).
[39]. J. M. Moon, J. H. Bae, J. A. Jeong, S. W. Jeong, N. J. Park, H. K. Kim, J. W. Kang, J. J. Kim and M. S. Yi, “Enhancement of hole injection using ozone treated Ag nanodots dispersed on indium tin oxide anode for organic light emitting diodes,” Appl. Phy. Lett. Vol. 90, pp. 163516–163516-3 (2007).
[40]. T. F. Guo, F. S. Yang, Z. J. Tsai, G. W. Feng, T. C. Wen, S. N. Hsieh, C. T. Chung, and C. I. Wu, “High-brightness top-emissive polymer light-emitting diodes utilizing organic oxide/Al/Ag composite cathode,” Appl. Phy. Lett. Vol. 89, pp. 051103–051103-3 (2006).
[41]. S. Han, X. Feng and Z. H. Lu, “Transparent-cathode for top-emission organic light-emitting diodes,” Appl. Phys. Lett. Vol. 82, pp. 2715–2717 (2003).
[42]. S. F. Hsu, C. C. Lee, A. T. Hu and C. H. Chen, “Fabrication of blue top-emitting organic light-emitting devices with highly saturated color ,” Current Appl. Phys. Vol. 4, pp. 663–666 (2004).
[43]. L. Ke, R. S. Kumar, P. Chen, L. Shen, S. J. Chua, and A. P. Burden, “Au-ITO Anode for Efficient Polymer Light-Emitting Device Operation,” IEEE Photonics technology letters. Vol. 17, pp. 543–545 (2005).
[44]. J. Y. Lee, “Efficient hole injection in organic light-emitting diodes using C60 as a buffer layer for Al reflective anodes,” Appl. Phy. Lett. Vol. 88, pp. 073512 –073512-3(2006).
[45]. J. Cao, X. Y. Jiang, and Z. L. Zhang, “MoOx modified Ag anode for top-emitting organic light-emitting devices,” Appl. Phy. Lett. Vol. 89, pp. 252108–252108-3 (2006).
[46]. C. R. Tsai, Y. S. Tsai, F. S. Juang, P. H. Yeh, Y. C. Chen, and C. C. Liu, “Top Emission Organic Light-Emitting Diodes with Double-Metal-Layer Anode,” Jpn. J. Appl. Phys. Vol. 46, pp. 2727–2730 (2007).
[47]. E. F. Schubert, N. E. J. Hunt, M. Micovic,+ R. J. Malik, D. L. Sivco, A. Y. Cho, G. J. Zydzik, “Highly Efficient Light-Emitting Diodes with Microcavities,” Science. Vol. 265, pp. 943–945 Aug (1994).
[48]. J. Grüner, F. Cacialli, and R. H. Friend, “Emission enhancement in single-layer conjugated polymer microcavities,” J. Appl. Phys. Vol. 80, pp. 207–215 Jul (1996).
[49]. A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and Julia M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. Vol. 80, pp. 6954–6964 Dec (1996).
[50]. S. Chen, Z. Zhao, Z. Jie,W. Xie, Y. Zhao, R. Song, C. Li, B. Quan and S. Liu, “A green top-emitting organic light-emitting device with improved luminance and efficiency,” J. Phys. D: Appl. Phys. Vol. 39, pp. 3738–3741 Aug (2006).
[51]. T. Fukuda, B. Wei, M. Ohashi, M. Ichikawa, and Y. Taniguchi, “High Coupling Efficiency of Microcavity Organic Light-Emitting Diode with Optical Fiber for as Light Source for Optical Interconnects,” Jpn. J. Appl. Phys. Vol. 46, pp. 642–646 (2007).
[52]. S. Tokito, T. Tsutsui, and Y. Taga, “Microcavity organic light-emitting diodes for strongly directed pure red, green, and blue emissions,” J. Appl. Phys. Vol. 86, pp. 2407–2411 Sep (1999).
[53]. S. F. Hsu, C. C. Lee, S. W. Hwang, H. H. Chen, C. H. Chen, and A. T. Hu, “Color-saturated and highly efficient top-emitting organic light-emitting devices,” Thin Solid Films. Vol. 478, pp. 271–274 (2005).
[54]. F. Ma, X. Liu, C. Zhang, H. Li, and L. Wang, “Design and Fabrication of Pure Green Color Microcavity Organic Light Emitting Device,” Jpn. J. Appl. Phys. Vol. 45, pp. 9224–9227 (2006).
[55]. W. Lichten, “Precise wavelength measurements and optical phase shifts. I. General theory,” J. Opt. Soc. Am., vol. A 2, pp. 1869–1876, (1985).
[56]. M. Y. Chan, S. L. Lai, M. K. Fung, C. S. Lee, S. T. Lee, “Highly efficient and substrate independent CsF/Yb/Ag cathodes for organic light-emitting devices,” Chem. Phys. Lett. Vol. 374, pp. 215–221 (2003).
[57]. C. O. Poon, F. L. Wong, S. W. Tong, R. Q. Zhang, C. S. Lee, and S. T. Lee, “Improved performance and stability of organic light-emitting devices with silicon oxy-nitride buffer layer,” Appl. Phys. Lett. Vol. 83, pp. 1038–1040 (2003).
[58]. L. S. Hung, C. W. Tang, M. G. Mason, P. Raychaudhuri, and J. Madathil, “Application of an ultrathin LiF/Al bilayer in organic surface-emitting diodes,” Appl. Phys. Lett. Vol. 78, pp. 544–546 (2001).
[59]. L. S. Huang, C. W. Tang, M. G. Mason, “Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode,” Appl. Phys. Lett. Vol. 70, pp. 152–154 (1997).
[60]. J. Pucilowski, R. Schuman, and J. Velasquez, “Contrast enhancement of light emitting diodes,” Appl. Opt., Vol. 13, pp. 2248–2252 (1974).
[61]. Z. Wu, L. Wang, and Yong Qiu, “Contrast-enhancement in organic light-emitting diodes,” OPTICS EXPRESS. Vol. 13(5), pp. 1406–1411 (2005).
[62]. O. Renault, O.V. Salata, M. Etchells, P.J. Dobson, and V. Christou, “A low reflectivity multilayer cathode for organic light-emitting diodes,” Thin Solid Films, Vol. 379, pp. 195–198 (2000).
[63]. L. S. Hung, and J. Madathil, “Reduction of Ambient Light Reflection in Organic Light-Emitting Diodes,” Adv. Mater., Vol. 13, pp. 1787–1790 (2001).
[64]. A. N. Krasnov, “High-contrast organic light-emitting diodes on flexible substrates,”App. Phys. Lett., Vol. 80, pp. 3853–3855 (2002).
[65]. H. Aziz, Y. F. Liew, H. M. Grandin, and Z. D. Popovic, “Reduced reflectance cathode for organic light-emitting devices using metalorganic mixtures” App. Phys. Lett., Vol. 83, pp. 186–188 (2003).
[66]. X. D. Feng, R. Khangura, and Z. H. Lu, “Metal–organic–metal cathode for high-contrast organic light-emitting diodes,” App. Phys. Lett., Vol. 85, pp. 497–499 (2004).
[67]. F. L. Wong, M. K. Fung, X. Jiang, C. S. Lee, and S. T. Lee, “Non-reflective black cathode in organic light-emitting diode,” Thin Solid Films, Vol. 446, pp. 143–146 (2004).
[68]. Z. Y. Xie, and L. S. Hung, “High-contrast organic light-emitting diodes,” App. Phys. Lett., Vol. 84, pp. 1207–1209 (2004).
[69]. J. H. Lee, C. C. Liao, P. J. Hu, and Y. Chang, “High contrast ratio organic light-emitting devices based on CuPC as electron transport material,” Synthetic Metals, Vol. 144, pp. 279–283 (2004 ).
[70]. S. H. Li, H. Liem, C. W. Chen, E. H. Wu, Z. Xu, and Y. Yang, “Stacked metal cathode for high-contrast-ratio polymeric light-emitting devices,” App. Phys. Lett. Vol. 86, pp. 143514–143514-3 (2005).
[71]. K. C. Lau, W. F. Xie, H. Y. Sun, C. S. Lee, and S. T. Lee, “Contrast improvement of organic light-emitting devices with Sm:Ag cathode,” App. Phys. Lett. Vol. 88, pp. 083507–083507-3 (2006).
[72]. B. Ruhstaller, T.A. Beierlein, H. Riel, S. Karg, J.C. Scott, W. Riess, "Simulating electronic and optical processes in multilayer organic light-emitting devices," IEEE Journal of Selected Topics in Quantum Electronics, Optoelectronic Device Simulation, Vol. 9, (3), pp. 723–731 (2003).
[73]. H. Riel, S. Karg, T.A. Beierlein, B. Ruhstaller, W. Riess, "Phosphorescent top-emitting organic light-emitting devices with improved light outcoupling," Appl. Phys. Lett. Vol. 82, pp. 466–468 (2003).
[74]. D. S. Liu, C. C. WU, and C. T. LEE, “A Transparent and Conductive Film Prepared by RF Magnetron Cosputtering System at Room Temperature,” Jpn. J. Appl. Phys. Vol 44(7A), pp. 5119–5121 (2005).
[75]. J. J. Huang, H. Y. Ueng, Y. K. Su, S. J. Lin, and F. S. Juang, “Thickness for Optimizing of Organic Layer and Multi-layer Anode on Luminance Efficiency in White-Light Top-Emission Organic Light-Emitting Diodes,” Journal of Nano Science and Nano Technology, Vol. 8, No. 11, pp. xx–xx (2008) (to be publishied)
[76]. S. J. Lin, H. Y. Ueng and F. S. Juang, “Effects of Thickness of Organic and Multilayer Anode on Luminance Efficiency in Top-Emission Organic Light Emitting Diodes,” Jpn. J. Appl. Phys. Vol. 45, pp. 3717–3720 (2006)
[77]. C. W. Horsting, Reliability Physics Symposium, 10th Annual, pp. 155 (1972).
[78]. A. Dodabalapur, L. J. Rothberg, T. M. Miller, and E. W. Kwock, “Microcavity effects in organic semiconductors,” Appl. Phy. Lett. Vol. 64, pp. 2486–2488 (1994).
[79]. F. Ma and X. Liu, “Phase shift and penetration depth of metal mirrors in a microcavity structure,” Appl. Opt. Vol. 46, pp. 6247–6250 (2007).
[80]. J. J. Huang, Y. K. Su, S. H. Wang, Y. H. Liu, and F. S. Juang, " Efficiency Enhancement of Top Emission Organic Light-Emitting Diodes with Ni/Au Periodic Anode," Jpn. J. Appl. Phys, Mar. (2008) (Accepted).
[81]. A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and Julia M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. Vol. 80, pp. 6954–6964 Dec (1996).
[82]. S. Tokito, T. Tsutsui, and Y. Taga, “Microcavity organic light-emitting diodes for strongly directed pure red, green, and blue emissions,” J. Appl. Phys. Vol. 86, pp. 2407–2411 Sep (1999).
[83]. W. Lichten, “Precise wavelength measurements and optical phase shifts. I. General theory,” J. Opt. Soc. Am., vol. A 2, pp. 1869–1876, (1985).
[84]. Z. Deng, Y. Zhan, H. Duan, Z. Xiong, F. Bai, and Y. Wang, “Optical microcavity based on porous and organic materials,” Synth. Met. Vol. 129, pp. 299–302 Apr (2002).
[85]. B. Temelkuran, E. Ozbay, M. M. Sigalas, G. Tuttle, C. M. Soukoulis, and K. M. Ho, “Reflection properties of metallic photonic crystals,” Appl. Phys. A. Vol. 66, pp. 363–365 (1998).
[86]. F. Ma and X. Liu, “Phase shift and penetration depth of metal mirrors in a microcavity structure,” Appl. Opt. Vol. 46, pp. 6247–6250 Sep (2007).
[87]. D. G Deppe, C. Lei, C. C. Lin and D. L. Huffaker, “Spontaneous Emission from Planar Microstructures,” J. Mod. Opt. Vol. 41, pp. 325–344 (1994).
[88]. M. W. Fay, G. Moldovan, and P. D. Brown, “Structural and electrical characterization of AuTiAlTi/AlGaN/GaN ohmic contacts,” J. Appl. Phys. Vol. 92, pp. 94–100 Jul (2002).
[89]. J. J. Huang, Y. K. Su, Y. H. Liu, and F. S. Juang, "Effect of Phase Shift in Periodic Anode on The Emission Spectra of Top Emitting Organic Light Emitting Diodes," IEEE Photon. Technol. Lett. (Accepted)
[90]. J. J. Huang, Y. C. Lin, Y. K. Su, Y. L. Wu, and F. S. Juang, "Black Film for Improving the Contrast Ratio of Organic Light Emitting Diodes," Journal of Nano Science and Nano Technology, Vol. 8, No. 11, pp. xx–xx, (2008). (to be publisched)