簡易檢索 / 詳目顯示

研究生: 方貞懿
Fang, Chen-Yi
論文名稱: LED產業多廠區多階層之投產規劃
The production plan for multi-site and multi-stage in LED industry
指導教授: 林清河
Lin, Chin-Ho
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系碩士在職專班
Department of Industrial and Information Management (on the job class)
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 56
中文關鍵詞: LED多廠區多階層產能規劃最佳化遺傳演算法
外文關鍵詞: LED, multi-site and multi-stage, capacity planning, optimization, Genetic Algorithm
相關次數: 點閱:109下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自由經濟引爆全球化的浪潮,為滿足全球化的需求,區域供應鏈和全球供應鏈於焉產生,企業為取得成本最佳化的規模經濟以及最佳核心能力的專注策略,其生產活動已由過去的單一工廠生產演變成跨國家、多工廠的生產模式。更為了滿足客戶及擴張策略之需求,往往透過擴廠或併購取得新工廠,快速擴大產能,亦逐漸的由單一廠區轉變為多廠區生產模式。因此各生產商必須完善多廠區的生產規劃,使各企業每個廠區的生產資源與產品配置最佳化,產生最佳生產模式來降低生產成本,並透過科學管理手法,創造生產效益,維持市場競爭力。
    本研究利用實際LED工廠的數據來進行探討,個案公司面臨之問題為產量分配,為求成本最小化,此投片規劃主要為解決多廠區多階層之多產品分配問題,依據數學規劃之特性,包含MPS需求量、產品廠區階層限制、產能上下限、生產變動成本及運輸成本,額外加入生產目標時間限制 (包含生產製程時間與運輸時間)以解決規劃人員擔心廠間運送導致無法達成總生產完工時間,將更為實務使用。
    並且利用遺傳演算法結合線性規劃解決求解效率問題,別於一般遺傳演算法隨機搜尋解的特性,在演算過程中,皆將非可行解排除在外,保證過程中產生的解皆為可行解,另外再加入低成本廠區優先分配機制,當其滿足產能上限後,再往次低成本廠區分配,此兩方法可增加遺傳演算法之搜尋效率並且使得演化結果更易趨於最佳解,而非區域最佳解,達成本研究最終目標為最低生產成本的最佳化配置。

    The thesis uses actual data from the LED industry to do the analysis. The purpose of the research is to allocate capacity efficiently and minimize cost. The production plan is mainly intended to solve the allocation problem for multi-site and multi-stage production plans. According to the mathematical programming characteristics, such as MPS demand, the limitation of each production site, the upper and lower capacity bounds, production variable costs, transportation costs, and limits to the target production time, are formulated in the MP model for the case firm. A GA (genetic algorithm) is implemented to solve the proposed model and the near-optimal of the problem can be acquired using the GA. Furthermore, a sensitivity analysis is conducted to verify the parameters of the GA and it is found that the value set of the parameters can facilitate reaching the near-optimal solution.

    目錄 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的與範圍 1 1.3 研究方法與步驟 5 1.4 論文架構 5 第二章 文獻探討 7 2.1 產能規劃相關文獻探討 7 2.2 遺傳演算法 11 2.2.1 啟發式演算法 11 2.2.2 遺傳演算法之介紹 12 2.3 小結 18 第三章 研究方法 20 3.1 問題描述與假設條件 20 3.1.1 問題敘述 20 3.1.2 研究假設 22 3.2模型架構 22 3.2.1 模式參數定義 23 3.2.2 目標式與限制式 25 3.3 遺傳演算法 28 第四章 模型建構與驗證結果分析 36 4.1 遺傳演算法之模型建構 36 4.2 實驗結果 40 4.3 遺傳演算法參數設定 42 4.3.1 遺傳演算法參數設定 vs. 成本績效 43 4.3.2 遺傳演算法參數設定 vs. 求解效率 46 4.3.3 小結 48 4.4 實務案例之現行做法比較 49 第五章 結論與未來研究方向建議 51 5.1 結論 51 5.2 未來研究方向建議 52 參考文獻 54

    參考文獻
    中文參考文獻:
    張美滿. (2002). 多廠區跨廠產能規劃之探討. 元智大學工業工程與管理學系學位論文, 1-126.
    鄭書豪. (1998). CONWIP 生產管制架構於IC封裝產業之應用. 國立清華大學工業工程與工程管理學系學位論文.

    英文參考文獻:
    Bullinger, H. J., Faehnrich, K. P., & Laubscher, H. P. (1997). Planning of multi-site production—an object-oriented model. International Journal of Production Economics, 51(1), 19-35.
    Chen, T. L., Lin, J. T., & Wu, C. H. (2014). Coordinated capacity planning in two-stage thin-film-transistor liquid-crystal-display (TFT-LCD) production networks. Omega, 42(1), 141-156.
    Fogarty, T. C. (1989, December). Varying the probability of mutation in the genetic algorithm. In Proceedings of the third international conference on Genetic algorithms (pp. 104-109). Morgan Kaufmann Publishers Inc..
    Gen, M., & Lin, L. (2014). Multiobjective evolutionary algorithm for manufacturing scheduling problems: state-of-the-art survey. Journal of Intelligent Manufacturing, 25(5), 849-866.
    Jayaraman, V., & Pirkul, H. (2001). Planning and coordination of production and distribution facilities for multiple commodities. European journal of operational research, 133(2), 394-408.
    Maulik, U., Bandyopadhyay, S., & Mukhopadhyay, A. (2011). Multiobjective Genetic Algorithms for Clustering: Applications in Data Mining and Bioinformatics. Springer Science & Business Media.
    Michalewicz, Z (2013) Genetic algorithms + data structures = evolution programs Springer Science & Business Media.
    Moon, C., Kim, J., & Hur, S. (2002). Integrated process planning and scheduling with minimizing total tardiness in multi-plants supply chain. Computers & Industrial Engineering, 43(1), 331-349.
    Papageorgiou, L. G., Rotstein, G. E., & Shah, N. (2001). Strategic supply chain optimization for the pharmaceutical industries. Industrial & Engineering Chemistry Research, 40(1), 275-286.
    Pirkul, H., & Jayaraman, V. (1998). A multi-commodity, multi-plant, capacitated facility location problem: formulation and efficient heuristic solution. Computers & Operations Research, 25(10), 869-878.
    Rastogi, A. P., Fowler, J. W., Carlyle, W. M., Araz, O. M., Maltz, A., & Büke, B. (2011). Supply network capacity planning for semiconductor manufacturing with uncertain demand and correlation in demand considerations. International Journal of Production Economics, 134(2), 322-332.
    Stray, J., Fowler, J. W., Carlyle, W. M., & Rastogi, A. P. (2006). Enterprise-wide semiconductor manufacturing resource planning. IEEE Transactions on Semiconductor Manufacturing, 19(2), 259-268.
    Geetha, T., Mahalakshmi, K., Ummusalma, I., & Kumaran, K. M. (2013). An Observational Analysis of Genetic Operators. International Journal of Computer Applications, 63(18), pp24-34.
    Yang, F. C., Chen, K., Wang, M. T., Chang, P. Y., & Sun, K. C. (2010). Mathematical modeling of multi-plant order allocation problem and solving by genetic algorithm with matrix representation. The International Journal of Advanced Manufacturing Technology, 51(9-12), 1251-1259.
    Yusof, U. K., & Deris, S. (2010, June). Optimizing machine utilization in semiconductor assembly industry using constraint-chromosome genetic algorithm. In Information Technology (ITSim), 2010 International Symposium in (Vol. 2, pp. 601-606). IEEE.
    Yılmaz, P., & Çatay, B. (2006). Strategic level three-stage production distribution planning with capacity expansion. Computers & Industrial Engineering, 51(4), 609-620.

    下載圖示 校內:2021-08-29公開
    校外:2021-08-29公開
    QR CODE