| 研究生: |
唐健富 Tang, Jian-Fu |
|---|---|
| 論文名稱: |
簡易合成鋁摻雜氧化鋅奈米結構特性探討及其在感測器及太陽能電池之應用 Facile synthesis and characterization of Al-Doped ZnO Nanostructures and Their Applications in Sensors and Solar Cells |
| 指導教授: |
朱聖緣
Chu, Sheng-Yuan |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | 氧化鋅 、奈米結構 、鋁摻雜 、感測器 、太陽能電池 |
| 外文關鍵詞: | ZnO, Nanostructures, Al-doped, Sensors, Solar Cells |
| 相關次數: | 點閱:107 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,許多一維和二維的氧化鋅奈米結構受到相當大地關注,做為元件基本組成部分的結構材料其蘊藏潛在的用途被視為新一代電子與光電元件不可或缺的部分。先前的研究報導指出,多種類型組成的奈米結構其元件效能更勝於單一類型的奈米結構。在這篇研究中,我們利用低溫化學浴熱法製備出多樣化性的氧化鋅奈米結構,其中包括:奈米柱、奈米牆、奈米花或是混合結構。
首先,我們開發出具有高密度且均勻之三種形貌的奈米結構:奈米柱、奈米牆和奈米花同時生長於基板上且不需要額外添加活化劑。我們所提出來的方法可以控制奈米花位置,將其控制在由奈米柱與奈米牆所組成的的凹槽之中。
再者,我們利用鋁薄膜當作摻雜來源,發現藉由摻雜不同的含量可以將原先奈米柱的結構轉換成奈米牆結構。此外,所以提出來的方法也可以達到高摻雜含量(9 at%),相對於一般文獻所提到數值。運用此結構於近紫外光感測器上面,在405波長的發光二極體照射下施加一伏電壓下,其光暗電流比可達99.5倍。
進而,我們採取多層結構 (Al/ZnO/Al/ZnO)當作成長奈米結構的晶種層,得到的結果是垂直於基板雙層奈米結構 (奈米柱與奈米牆),其中再增加層數後同時間反應下相對奈米柱的長度也隨之增加。此外,此結構運用膽固醇生醫感測器上面可提供更多的面積吸附膽固醇氧化脢,在線性區域: 50–500 mgdl-1,其感測靈敏度: 93.82 μA/mMcm2。
最後,將奈米結構運用在太陽能電池上,利用奈米柱上塗佈PMMA當作抗反射層,其中使用氧化電漿處理製備出不同形貌奈米結構,太陽能電池的效率可以提升到11.57 %。此外也將奈米牆的結構運用當做電子收集層運用在鈣鈦礦太陽能電池上,相對於氧化鋅薄膜而言其奈米牆的效率達13.6%。
In recent years, many zinc oxide (ZnO) nanostructures with one-dimensional (1D) and two-dimensional (2D) morphologies, such as nanorods, nanobelts, nanowalls and nanoflowers, have attracted much attention for their potential use as fundamental building blocks for new generation of electronic and photonic devices. In this study, ZnO nanostructure (including nanorods, nanowall, nanoflower and hybrid nanostructures) were fabricated with chemical bath method at low temperature.
Firstly, we developed a hydrothermal method for the growth of three types of ZnO nanostructures: nanorods, nanowalls and nanoflowers. The structures are produced at high densities with a high degree of uniformity on Al-coated SiO2 substrates without the need for surfactant. The proposed method makes it possible to control the distribution of these structures along the grooves created by altering the growth rate of ZnO nanorods and nanowalls.
Secondly, we report on a means of tuning the morphology of ZnO nanostructure using Al thin film as a doping source. An increase in the thickness of the Al thin film causes the evolution of the morphology from nanorods to nanowalls. We managed to produce AZO nanostructures with higher doping concentrations (9 at%) by using various thicknesses of Al film as a reaction layer. The resulting photosensor was tested using a 405 nm light-emitting diode (LED) at a voltage bias of 1 V across the device, wherein a photocurrent-to-dark-current ratio of 99.5 was observed.
Thirdly, we fabricated an overlapping structure of vertical nanorods and nanowalls using a chemical bath method. The proposed multilayer Al/ZnO/Al/ZnO buffer results in the formation of two types of nanostructure (nanowalls and rods) and also increased the length to which the nanorods grow over time. In addition, a cholesterol biosensor was constructed using these nanostructures as supporting materials for cholesterol oxidase loading. The device achieved sensitivity of 93.82 μA/mMcm2 within a linear-range of 50–500 mgdl-1 .
Final, a hybrid nanostructure comprising ZnO nanorods embedded in polymethylmethacrylate (PMMA) was developed for use as an antireflection (AR) coating. The ZnO nanorod/PMMA structure that underwent O2 plasma treatment for 120s presented the highest efficiency of 11.57 %.
In addition, reports on the fabrication of ZnO nanowalls for use as an electron collecting layer (ECL) in CH3NH3PbI3 perovskite solar cells (PSCs). The proposed ZnO nanowalls achieved a fill factor significantly higher than that of ZnO thin films, which translated into a remarkable improvement in power conversion efficiency, reaching 13.6 % under AM 1.5G illumination.
[1] S. Bai, W. Wu, Y. Qin, N. Cui, D. J. Bayerl, and X. Wang, “High‐Performance Integrated ZnO Nanowire UV Sensors on Rigid and Flexible Substrates,” Advanced Functional Materials, vol. 21, no. 23, pp. 4464-4469, 2011.
[2] W. Water, and S.-E. Chen, “Using ZnO nanorods to enhance sensitivity of liquid sensor,” Sensors and Actuators B: Chemical, vol. 136, no. 2, pp. 371-375, 2009.
[3] J. Wang, M. Xu, R. Zhao, and G. Chen, “A highly sensitive H 2 O 2 sensor based on zinc oxide nanorod arrays film sensing interface,” Analyst, vol. 135, no. 8, pp. 1992-1996, 2010.
[4] Z.-L. Tseng, P.-C. Kao, M.-F. Shih, H.-H. Huang, J.-Y. Wang, and S.-Y. Chu, “Electrical bistability in hybrid ZnO nanorod/polymethylmethacrylate heterostructures,” Applied Physics Letters, vol. 97, no. 21, pp. 212103, 2010.
[5] F. Xu, and L. Sun, “Solution-derived ZnO nanostructures for photoanodes of dye-sensitized solar cells,” Energy & Environmental Science, vol. 4, no. 3, pp. 818-841, 2011.
[6] I. H. Chan, J. C. Chang, C. T. Sun, M. P. Houng, and S. Y. Chu, “Deposition of Preferred‐Orientation ZnO Films on the Lead‐Free Ceramic Substrates and its Effects on the Properties of Surface Acoustic Wave Devices,” Journal of the American Ceramic Society, vol. 95, no. 7, pp. 2254-2259, 2012.
[7] Y.-J. Lee, T. L. Sounart, J. Liu, E. D. Spoerke, B. B. McKenzie, J. W. Hsu, and J. A. Voigt, “Tunable arrays of ZnO nanorods and nanoneedles via seed layer and solution chemistry,” Crystal Growth and Design, vol. 8, no. 6, pp. 2036-2040, 2008.
[8] W.-Y. Wu, J.-M. Ting, and C.-K. Chang, “Morphology-selected, room-temperature growth of ZnO nanostructures,” CrystEngComm, vol. 12, no. 5, pp. 1433-1438, 2010.
[9] C. Ye, Y. Bando, G. Shen, and D. Golberg, “Thickness-dependent photocatalytic performance of ZnO nanoplatelets,” The Journal of Physical Chemistry B, vol. 110, no. 31, pp. 15146-15151, 2006.
[10] Y. Feng, M. Zhang, M. Guo, and X. Wang, “Studies on the PEG-assisted hydrothermal synthesis and growth mechanism of ZnO microrod and mesoporous microsphere arrays on the substrate,” Crystal growth & design, vol. 10, no. 4, pp. 1500-1507, 2010.
[11] S. C. Lyu, Y. Zhang, C. J. Lee, H. Ruh, and H. J. Lee, “Low-temperature growth of ZnO nanowire array by a simple physical vapor-deposition method,” Chemistry of materials, vol. 15, no. 17, pp. 3294-3299, 2003.
[12] Y. Heo, V. Varadarajan, M. Kaufman, K. Kim, D. Norton, F. Ren, and P. Fleming, “Site-specific growth of ZnO nanorods using catalysis-driven molecular-beam epitaxy,” Applied physics letters, vol. 81, no. 16, pp. 3046-3048, 2002.
[13] F. Yang, W.-H. Liu, X.-W. Wang, J. Zheng, R.-Y. Shi, H. Zhao, and H.-Q. Yang, “Controllable low temperature vapor-solid growth and hexagonal disk enhanced field emission property of ZnO nanorod arrays and hexagonal nanodisk networks,” ACS applied materials & interfaces, vol. 4, no. 8, pp. 3852-3859, 2012.
[14] S. Baruah, and J. Dutta, “Hydrothermal growth of ZnO nanostructures,” Science and Technology of Advanced Materials, 2016.
[15] F. Davar, A. Majedi, and A. Mirzaei, “Green synthesis of ZnO nanoparticles and its application in the degradation of some dyes,” Journal of the American Ceramic Society, vol. 98, no. 6, pp. 1739-1746, 2015.
[16] M. Mamat, Z. Khusaimi, M. Musa, M. Malek, and M. Rusop, “Fabrication of ultraviolet photoconductive sensor using a novel aluminium-doped zinc oxide nanorod–nanoflake network thin film prepared via ultrasonic-assisted sol–gel and immersion methods,” Sensors and Actuators A: Physical, vol. 171, no. 2, pp. 241-247, 2011.
[17] S. Liu, C. Li, J. Yu, and Q. Xiang, “Improved visible-light photocatalytic activity of porous carbon self-doped ZnO nanosheet-assembled flowers,” CrystEngComm, vol. 13, no. 7, pp. 2533-2541, 2011.
[18] M. Zhong, H. Wang, Y. Liu, M. Li, H. Huang, and H. Shen, “ZnO microsheet modified TiO2 nanoparticle composite films for dye-sensitized solar cells,” Chinese Science Bulletin, vol. 55, no. 18, pp. 1945-1948, 2010.
[19] H.-M. Cheng, W.-H. Chiu, C.-H. Lee, S.-Y. Tsai, and W.-F. Hsieh, “Formation of branched ZnO nanowires from solvothermal method and dye-sensitized solar cells applications,” The Journal of Physical Chemistry C, vol. 112, no. 42, pp. 16359-16364, 2008.
[20] A. S. Kamble, B. B. Sinha, K. Chung, M. G. Gil, V. Burungale, C.-J. Park, J. H. Kim, and P. S. Patil, “Effect of hydroxide anion generating agents on growth and properties of ZnO nanorod arrays,” Electrochimica Acta, vol. 149, pp. 386-393, 2014.
[21] V. L. Solozhenko, O. O. Kurakevych, P. S. Sokolov, and A. N. Baranov, “Kinetics of the wurtzite-to-rock-salt phase transformation in ZnO at high pressure,” The Journal of Physical Chemistry A, vol. 115, no. 17, pp. 4354-4358, 2011.
[22] A. A. Ashrafi, A. Ueta, A. Avramescu, H. Kumano, I. Suemune, Y.-W. Ok, and T.-Y. Seong, “Growth and characterization of hypothetical zinc-blende ZnO films on GaAs (001) substrates with ZnS buffer layers,” Applied Physics Letters, vol. 76, no. 5, pp. 550-552, 2000.
[23] R. Wang, L. L. King, and A. W. Sleight, “Highly conducting transparent thin films based on zinc oxide,” Journal of materials research, vol. 11, no. 07, pp. 1659-1664, 1996.
[24] M. Kawakami, A. B. Hartanto, Y. Nakata, and T. Okada, “Synthesis of ZnO nanorods by nanoparticle assisted pulsed-laser deposition,” Japanese journal of applied physics, vol. 42, no. 1A, pp. L33, 2003.
[25] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, “Low‐temperature wafer‐scale production of ZnO nanowire arrays,” Angewandte Chemie, vol. 115, no. 26, pp. 3139-3142, 2003.
[26] L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, “General route to vertical ZnO nanowire arrays using textured ZnO seeds,” Nano Letters, vol. 5, no. 7, pp. 1231-1236, 2005.
[27] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nature materials, vol. 4, no. 6, pp. 455-459, 2005.
[28] L. Xu, Q. Liao, J. Zhang, X. Ai, and D. Xu, “Single-crystalline ZnO nanotube arrays on conductive glass substrates by selective disolution of electrodeposited ZnO nanorods,” The Journal of Physical Chemistry C, vol. 111, no. 12, pp. 4549-4552, 2007.
[29] G. Cadafalch Gazquez, S. Lei, A. George, H. Gullapalli, B. A. Boukamp, P. M. Ajayan, and J. E. ten Elshof, “Low-cost, large-area, facile and rapid fabrication of aligned ZnO nanowire device arrays,” ACS applied materials & interfaces, 2016.
[30] Y. Zhao, and Y.-U. Kwon, “Templateless hydrothermal synthesis of aligned ZnO nanorods,” Chemistry letters, vol. 33, no. 12, pp. 1578-1579, 2004.
[31] Z. Li, Y. Xie, Y. Xiong, R. Zhang, and W. He, “Reverse micelle-assisted route to control diameters of ZnO nanorods by selecting different precursors,” Chemistry Letters, vol. 32, no. 8, pp. 760-761, 2003.
[32] X. Zhu, Y. Li, Y. Lu, L. Liu, and Y. Xia, “Effects of Li or Li/Mg dopants on the orientation of ZnO nanorods prepared by sol–gel method,” Materials chemistry and physics, vol. 102, no. 1, pp. 75-79, 2007.
[33] Y. Wang, X. Li, N. Wang, X. Quan, and Y. Chen, “Controllable synthesis of ZnO nanoflowers and their morphology-dependent photocatalytic activities,” Separation and Purification Technology, vol. 62, no. 3, pp. 727-732, 2008.
[34] A. Pan, R. Yu, S. Xie, Z. Zhang, C. Jin, and B. Zou, “ZnO flowers made up of thin nanosheets and their optical properties,” Journal of Crystal Growth, vol. 282, no. 1, pp. 165-172, 2005.
[35] L. Xu, Y.-L. Hu, C. Pelligra, C.-H. Chen, L. Jin, H. Huang, S. Sithambaram, M. Aindow, R. Joesten, and S. L. Suib, “ZnO with different morphologies synthesized by solvothermal methods for enhanced photocatalytic activity,” Chemistry of Materials, vol. 21, no. 13, pp. 2875-2885, 2009.
[36] Z. Guo, D. Zhao, D. Shen, F. Fang, J. Zhang, and B. Li, “Structure and photoluminescence properties of aligned ZnO nanobolt arrays,” Crystal Growth and Design, vol. 7, no. 11, pp. 2294-2296, 2007.
[37] Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, and R. P. Chang, “Fabrication of ZnO nanorods and nanotubes in aqueous solutions,” Chemistry of Materials, vol. 17, no. 5, pp. 1001-1006, 2005.
[38] S. Vempati, J. Mitra, and P. Dawson, “One-step synthesis of ZnO nanosheets: a blue-white fluorophore,” Nanoscale research letters, vol. 7, no. 1, pp. 1, 2012.
[39] M. Liu, and H. K. Kim, “Ultraviolet detection with ultrathin ZnO epitaxial films treated with oxygen plasma,” Applied physics letters, vol. 84, no. 2, pp. 173-175, 2004.
[40] X. Zheng, Q. S. Li, J. Zhao, D. Chen, B. Zhao, Y. Yang, and L. C. Zhang, “Photoconductive ultraviolet detectors based on ZnO films,” Applied Surface Science, vol. 253, no. 4, pp. 2264-2267, 2006.
[41] Y.-K. Su, Y.-Z. Chiou, F.-S. Juang, S.-J. Chang, and J.-K. Sheu, “GaN and InGaN metal-semiconductor-metal photodetectors with different Schottky contact metals,” Japanese Journal of Applied Physics, vol. 40, no. 4S, pp. 2996, 2001.
[42] M. Nakano, T. Makino, A. Tsukazaki, K. Ueno, A. Ohtomo, T. Fukumura, H. Yuji, S. Akasaka, K. Tamura, and K. Nakahara, “Transparent polymer Schottky contact for a high performance visible-blind ultraviolet photodiode based on ZnO,” Applied Physics Letters, vol. 93, no. 12, pp. 123309, 2008.
[43] T.-H. Moon, M.-C. Jeong, W. Lee, and J.-M. Myoung, “The fabrication and characterization of ZnO UV detector,” Applied Surface Science, vol. 240, no. 1, pp. 280-285, 2005.
[44] K. Liu, M. Sakurai, and M. Aono, “ZnO-based ultraviolet photodetectors,” Sensors, vol. 10, no. 9, pp. 8604-8634, 2010.
[45] S. K. Arya, S. Saha, J. E. Ramirez-Vick, V. Gupta, S. Bhansali, and S. P. Singh, “Recent advances in ZnO nanostructures and thin films for biosensor applications: review,” Analytica chimica acta, vol. 737, pp. 1-21, 2012.
[46] A. Umar, M. Rahman, A. Al-Hajry, and Y.-B. Hahn, “Highly-sensitive cholesterol biosensor based on well-crystallized flower-shaped ZnO nanostructures,” Talanta, vol. 78, no. 1, pp. 284-289, 2009.
[47] N. Batra, M. Tomar, and V. Gupta, “Efficient detection of cholesterol using ZnO thin film based matrix,” Journal of Experimental Nanoscience, vol. 8, no. 3, pp. 280-287, 2013.
[48] S. Chawla, R. Rawal, and C. Pundir, “Preparation of cholesterol oxidase nanoparticles and their application in amperometric determination of cholesterol,” Journal of nanoparticle research, vol. 15, no. 9, pp. 1-9, 2013.
[49] R. Ahmad, N. Tripathy, and Y.-B. Hahn, “Wide linear-range detecting high sensitivity cholesterol biosensors based on aspect-ratio controlled ZnO nanorods grown on silver electrodes,” Sensors and Actuators B: Chemical, vol. 169, pp. 382-386, 2012.
[50] M. Israr, J. Sadaf, O. Nur, M. Willander, S. Salman, and B. Danielsson, “Chemically fashioned ZnO nanowalls and their potential application for potentiometric cholesterol biosensor,” Applied Physics Letters, vol. 98, no. 25, pp. 253705, 2011.
[51] S. P. Singh, and P. Nagarjuna, “Organometal halide perovskites as useful materials in sensitized solar cells,” Dalton Transactions, vol. 43, no. 14, pp. 5247-5251, 2014.
[52] P. Gao, M. Grätzel, and M. K. Nazeeruddin, “Organohalide lead perovskites for photovoltaic applications,” Energy & Environmental Science, vol. 7, no. 8, pp. 2448-2463, 2014.
[53] J. B. Baxter, and C. A. Schmuttenmaer, “Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy,” The Journal of Physical Chemistry B, vol. 110, no. 50, pp. 25229-25239, 2006.
[54] C.-H. Lee, Y.-J. Kim, J. Lee, Y. J. Hong, J.-M. Jeon, M. Kim, S. Hong, and G.-C. Yi, “Scalable network electrical devices using ZnO nanowalls,” Nanotechnology, vol. 22, no. 5, pp. 055205, 2010.
[55] M. Raula, M. H. Rashid, T. K. Paira, E. Dinda, and T. K. Mandal, “Ascorbate-assisted growth of hierarchical ZnO nanostructures: sphere, spindle, and flower and their catalytic properties,” Langmuir, vol. 26, no. 11, pp. 8769-8782, 2010.
[56] C.-H. Ku, H.-H. Yang, G.-R. Chen, and J.-J. Wu, “Wet-chemical route to ZnO nanowire-layered basic zinc acetate/ZnO nanoparticle composite film,” Crystal Growth and Design, vol. 8, no. 1, pp. 283-290, 2007.
[57] B. Kumar, K. Y. Lee, H.-K. Park, S. J. Chae, Y. H. Lee, and S.-W. Kim, “Controlled growth of semiconducting nanowire, nanowall, and hybrid nanostructures on graphene for piezoelectric nanogenerators,” Acs Nano, vol. 5, no. 5, pp. 4197-4204, 2011.
[58] S. Gao, H. Li, J. Yuan, Y. Li, X. Yang, and J. Liu, “ZnO nanorods/plates on Si substrate grown by low-temperature hydrothermal reaction,” Applied Surface Science, vol. 256, no. 9, pp. 2781-2785, 2010.
[59] R. Shi, P. Yang, J. Wang, A. Zhang, Y. Zhu, Y. Cao, and Q. Ma, “Growth of flower-like ZnO via surfactant-free hydrothermal synthesis on ITO substrate at low temperature,” CrystEngComm, vol. 14, no. 18, pp. 5996-6003, 2012.
[60] H. Zhang, D. Yang, X. Ma, Y. Ji, J. Xu, and D. Que, “Synthesis of flower-like ZnO nanostructures by an organic-free hydrothermal process,” Nanotechnology, vol. 15, no. 5, pp. 622, 2004.
[61] S. Maiti, U. N. Maiti, A. Chowdhury, and K. K. Chattopadhyay, “Ambient condition oxidation of zinc foil in supersaturated solution for shape tailored ZnO nanostructures: low cost candidates for efficient electron emitter and UV-detector,” CrystEngComm, vol. 16, no. 9, pp. 1659-1668, 2014.
[62] T. Wang, Y. Liu, G. Li, Z. Sun, J. Lu, B. Liu, and M. Wu, “Synthesis of highly-transparent Al-doped ZnO porous network thin films,” CrystEngComm, vol. 13, no. 7, pp. 2661-2666, 2011.
[63] J.-J. Feng, Q.-C. Liao, A.-J. Wang, and J.-R. Chen, “Mannite supported hydrothermal synthesis of hollow flower-like ZnO structures for photocatalytic applications,” CrystEngComm, vol. 13, no. 12, pp. 4202-4210, 2011.
[64] C. Wu, X. Qiao, L. Luo, and H. Li, “Synthesis of ZnO flowers and their photoluminescence properties,” Materials Research Bulletin, vol. 43, no. 7, pp. 1883-1891, 2008.
[65] D.-F. Zhang, L.-D. Sun, J. Zhang, Z.-G. Yan, and C.-H. Yan, “Hierarchical construction of ZnO architectures promoted by heterogeneous nucleation,” Crystal Growth and Design, vol. 8, no. 10, pp. 3609-3615, 2008.
[66] W. Peng, S. Qu, G. Cong, and Z. Wang, “Synthesis and structures of morphology-controlled ZnO nano-and microcrystals,” Crystal growth & design, vol. 6, no. 6, pp. 1518-1522, 2006.
[67] X. Wu, G. Siu, C. Fu, and H. Ong, “Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films,” Applied Physics Letters, vol. 78, no. 16, pp. 2285-2287, 2001.
[68] A. B. Djurišić, and Y. H. Leung, “Optical properties of ZnO nanostructures,” small, vol. 2, no. 8‐9, pp. 944-961, 2006.
[69] J. Hu, and Y. Bando, “Growth and optical properties of single-crystal tubular ZnO whiskers,” Applied Physics Letters, vol. 82, no. 9, pp. 1401-1403, 2003.
[70] B. Lin, Z. Fu, Y. Jia, and G. Liao, “Defect photoluminescence of undoping ZnO films and its dependence on annealing conditions,” Journal of the Electrochemical Society, vol. 148, no. 3, pp. G110-G113, 2001.
[71] J.-F. Tang, Y.-M. Lu, and S.-Y. Chu, “The growth of AZO nanostructures with high doping concentration using vertical reaction layer synthesizing method and their applications,” Sensors and Actuators B: Chemical, vol. 225, pp. 327-333, 2016.
[72] A. K. Rana, A. J, Y. Kumar, A. M. S, K. V. Adarsh, S. Sen, and P. M. Shirage, “Enhancement of two photon absorption with Ni doping in the dilute magnetic semiconductor ZnO crystalline nanorods,” Applied Physics Letters, vol. 107, no. 23, pp. 231907, 2015.
[73] J.-F. Tang, H.-H. Su, Y.-M. Lu, and S.-Y. Chu, “Controlled growth of ZnO nanoflowers on nanowall and nanorod networks via a hydrothermal method,” CrystEngComm, vol. 17, no. 3, pp. 592-597, 2015.
[74] Y. Kim, and S. Kang, “Aluminum-doped ZnO nanorod array by thermal diffusion process,” Materials Letters, vol. 63, no. 12, pp. 1065-1067, 2009.
[75] P. Rai, and Y.-T. Yu, “Citrate-assisted hydrothermal synthesis of single crystalline ZnO nanoparticles for gas sensor application,” Sensors and Actuators B: Chemical, vol. 173, pp. 58-65, 2012.
[76] L. Zhang, J. Zhao, H. Lu, L. Gong, L. Li, J. Zheng, H. Li, and Z. Zhu, “High sensitive and selective formaldehyde sensors based on nanoparticle-assembled ZnO micro-octahedrons synthesized by homogeneous precipitation method,” Sensors and Actuators B: Chemical, vol. 160, no. 1, pp. 364-370, 2011.
[77] G. H. Mhlongo, D. E. Motaung, and H. C. Swart, “Pd 2+ doped ZnO nanostructures: Structural, luminescence and gas sensing properties,” Materials Letters, vol. 160, pp. 200-205, 2015.
[78] S. Bai, T. Guo, Y. Zhao, R. Luo, D. Li, A. Chen, and C. C. Liu, “Mechanism enhancing gas sensing and first-principle calculations of Al-doped ZnO nanostructures,” Journal of Materials Chemistry A, vol. 1, no. 37, pp. 11335-11342, 2013.
[79] N. Han, X. Wu, L. Chai, H. Liu, and Y. Chen, “Counterintuitive sensing mechanism of ZnO nanoparticle based gas sensors,” Sensors and Actuators B: Chemical, vol. 150, no. 1, pp. 230-238, 2010.
[80] X. Jiang, F. Wong, M. Fung, and S. Lee, “Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices,” Applied Physics Letters, vol. 83, no. 9, pp. 1875-1877, 2003.
[81] D.-J. Yun, and S.-W. Rhee, “Deposition of Al-doped ZnO thin-films with radio frequency magnetron sputtering for a source/drain electrode for pentacene thin-film transistor,” Thin Solid Films, vol. 517, no. 16, pp. 4644-4649, 2009.
[82] M. Mamat, M. Malek, N. Hafizah, Z. Khusaimi, M. Musa, and M. Rusop, “Fabrication of an ultraviolet photoconductive sensor using novel nanostructured, nanohole-enhanced, aligned aluminium-doped zinc oxide nanorod arrays at low immersion times,” Sensors and Actuators B: Chemical, vol. 195, pp. 609-622, 2014.
[83] V. Gaddam, R. R. Kumar, M. Parmar, G. K. Yaddanapudi, M. Nayak, and K. Rajanna, “Morphology controlled synthesis of Al doped ZnO nanosheets on Al alloy substrate by low-temperature solution growth method,” RSC Advances, vol. 5, no. 18, pp. 13519-13524, 2015.
[84] H. Hagendorfer, K. Lienau, S. Nishiwaki, C. M. Fella, L. Kranz, A. R. Uhl, D. Jaeger, L. Luo, C. Gretener, and S. Buecheler, “Highly transparent and conductive ZnO: Al thin films from a low temperature aqueous solution approach,” Advanced Materials, vol. 26, no. 4, pp. 632-636, 2014.
[85] J.-L. Wang, T.-Y. Hsieh, P.-Y. Yang, C.-C. Hwang, D.-C. Shye, and I.-C. Lee, “Oxygen annealing effect on field-emission characteristics of hydrothermally synthesized Al-doped ZnO nanowires,” Surface and Coatings Technology, vol. 231, pp. 423-427, 2013.
[86] J. Liu, L. Xu, B. Wei, W. Lv, H. Gao, and X. Zhang, “One-step hydrothermal synthesis and optical properties of aluminium doped ZnO hexagonal nanoplates on a zinc substrate,” CrystEngComm, vol. 13, no. 5, pp. 1283-1286, 2011.
[87] Z.-L. Tseng, P.-C. Kao, C.-S. Yang, Y.-D. Juang, and S.-Y. Chu, “Transparent Al-doped ZnO anodes in organic light-emitting diodes investigated using a hole-only device,” Applied Surface Science, vol. 261, pp. 360-363, 2012.
[88] H. K. Lee, M. S. Kim, and J. S. Yu, “Effect of AZO seed layer on electrochemical growth and optical properties of ZnO nanorod arrays on ITO glass,” Nanotechnology, vol. 22, no. 44, pp. 445602, 2011.
[89] H. Huang, H. Wang, B. Li, X. Mo, H. Long, Y. Li, H. Zhang, D. L. Carroll, and G. Fang, “Seedless synthesis of layered ZnO nanowall networks on Al substrate for white light electroluminescence,” Nanotechnology, vol. 24, no. 31, pp. 315203, 2013.
[90] B. Cao, and W. Cai, “From ZnO nanorods to nanoplates: chemical bath deposition growth and surface-related emissions,” The Journal of Physical Chemistry C, vol. 112, no. 3, pp. 680-685, 2008.
[91] P.-Y. Yang, J.-L. Wang, P.-C. Chiu, J.-C. Chou, C.-W. Chen, H.-H. Li, and H.-C. Cheng, “pH sensing characteristics of extended-gate field-effect transistor based on Al-doped ZnO nanostructures hydrothermally synthesized at low temperatures,” Electron Device Letters, IEEE, vol. 32, no. 11, pp. 1603-1605, 2011.
[92] J. Zhang, and W. Que, “Preparation and characterization of sol–gel Al-doped ZnO thin films and ZnO nanowire arrays grown on Al-doped ZnO seed layer by hydrothermal method,” Solar Energy Materials and Solar Cells, vol. 94, no. 12, pp. 2181-2186, 2010.
[93] D.-T. Phan, and G.-S. Chung, “Effects of defects in Ga-doped ZnO nanorods formed by a hydrothermal method on CO sensing properties,” Sensors and Actuators B: Chemical, vol. 187, pp. 191-197, 2013.
[94] D. Singh, A. Narasimulu, L. Garcia-Gancedo, Y. Fu, N. Soin, G. Shao, and J. Luo, “Novel ZnO nanorod films by chemical solution deposition for planar device applications,” Nanotechnology, vol. 24, no. 27, pp. 275601, 2013.
[95] S. Bang, S. Lee, Y. Ko, J. Park, S. Shin, H. Seo, and H. Jeon, “Photocurrent detection of chemically tuned hierarchical ZnO nanostructures grown on seed layers formed by atomic layer deposition,” Nanoscale research letters, vol. 7, no. 1, pp. 1, 2012.
[96] G. C. Park, S. M. Hwang, J. H. Lim, and J. Joo, “Growth behavior and electrical performance of Ga-doped ZnO nanorod/p-Si heterojunction diodes prepared using a hydrothermal method,” Nanoscale, vol. 6, no. 3, pp. 1840-1847, 2014.
[97] L. Zhang, J. Zhao, H. Lu, L. Li, J. Zheng, H. Li, and Z. Zhu, “Facile synthesis and ultrahigh ethanol response of hierarchically porous ZnO nanosheets,” Sensors and Actuators B: Chemical, vol. 161, no. 1, pp. 209-215, 2012.
[98] Y. Wei, L. Ke, J. Kong, H. Liu, Z. Jiao, X. Lu, H. Du, and X. W. Sun, “Enhanced photoelectrochemical water-splitting effect with a bent ZnO nanorod photoanode decorated with Ag nanoparticles,” Nanotechnology, vol. 23, no. 23, pp. 235401, 2012.
[99] X. Zhao, C. Duan, Z. Liang, and H. Shen, “Preparation of self-assembled Ag nanoparticles for effective light-trapping in crystalline silicon solar cells,” RSC Advances, vol. 4, no. 27, pp. 13757-13763, 2014.
[100] D. Y. Inamdar, A. D. Lad, A. K. Pathak, I. Dubenko, N. Ali, and S. Mahamuni, “Ferromagnetism in ZnO nanocrystals: doping and surface chemistry,” The Journal of Physical Chemistry C, vol. 114, no. 3, pp. 1451-1459, 2010.
[101] Q. Zhu, C. Xie, H. Li, C. Yang, S. Zhang, and D. Zeng, “Selectively enhanced UV and NIR photoluminescence from a degenerate ZnO nanorod array film,” Journal of Materials Chemistry C, vol. 2, no. 23, pp. 4566-4580, 2014.
[102] M. E. Swanwick, S. M. Pfaendler, A. I. Akinwande, and A. J. Flewitt, “Near-ultraviolet zinc oxide nanowire sensor using low temperature hydrothermal growth,” Nanotechnology, vol. 23, no. 34, pp. 344009, 2012.
[103] Y.-H. Lu, W.-H. Lin, C.-Y. Yang, Y.-H. Chiu, Y.-C. Pu, M.-H. Lee, Y.-C. Tseng, and Y.-J. Hsu, “A facile green antisolvent approach to Cu 2+-doped ZnO nanocrystals with visible-light-responsive photoactivities,” Nanoscale, vol. 6, no. 15, pp. 8796-8803, 2014.
[104] L. Mandal, N. S. Chaudhari, and S. Ogale, “Self-Powered UV-vis Photodetector Based on ZnIn2S4/Hydrogel Interface,” ACS applied materials & interfaces, vol. 5, no. 18, pp. 9141-9147, 2013.
[105] J. Cheng, X. Zhang, and Z. Luo, “Oriented growth of ZnO nanostructures on Si and Al substrates,” Surface and Coatings Technology, vol. 202, no. 19, pp. 4681-4686, 2008.
[106] R. Ahmad, N. Tripathy, N. K. Jang, G. Khang, and Y.-B. Hahn, “Fabrication of highly sensitive uric acid biosensor based on directly grown ZnO nanosheets on electrode surface,” Sensors and Actuators B: Chemical, vol. 206, pp. 146-151, 2015.
[107] P. Biparva, S. M. Abedirad, and S. Y. Kazemi, “ZnO nanoparticles as an oxidase mimic-mediated flow-injection chemiluminescence system for sensitive determination of carvedilol,” Talanta, vol. 130, pp. 116-121, 2014.
[108] T. Li, W. Zeng, and Z. Wang, “Quasi-one-dimensional metal-oxide-based heterostructural gas-sensing materials: A review,” Sensors and Actuators B: Chemical, vol. 221, pp. 1570-1585, 2015.
[109] Q. Cai, Y. Gao, T. Gao, S. Lan, O. Simalou, X. Zhou, Y. Zhang, C. Harnoode, G. Gao, and A. Dong, “Insight into Biological Effects of Zinc Oxide Nanoflowers on Bacteria: Why Morphology Matters,” ACS applied materials & interfaces, vol. 8, no. 16, pp. 10109-10120, 2016.
[110] R. Kumar, D. Rana, A. Umar, P. Sharma, S. Chauhan, and M. S. Chauhan, “Ag-doped ZnO nanoellipsoids: Potential scaffold for photocatalytic and sensing applications,” Talanta, vol. 137, pp. 204-213, 2015.
[111] Y.-C. Liang, “Microstructure and optical properties of electrodeposited Al-doped ZnO nanosheets,” Ceramics International, vol. 38, no. 1, pp. 119-124, 2012.
[112] C.-Y. Huang, Y.-T. Ho, C.-J. Hung, and T.-Y. Tseng, “Compact Ga-doped ZnO nanorod thin film for making high-performance transparent resistive switching memory,” Electron Devices, IEEE Transactions on, vol. 61, no. 10, pp. 3435-3441, 2014.
[113] S.-S. Lin, I.-C. Chen, J. Yang, T. J. Hsueh, C.-L. Hsu, H.-E. Lee, and T.-Y. Shieh, “A study on one-step immobilization of horse immunoglobulin with vertically grown ZnO nanorods substrates,” Journal of The Electrochemical Society, vol. 158, no. 4, pp. K107-K111, 2011.
[114] M. Zhao, J. Huang, Y. Zhou, Q. Chen, X. Pan, H. He, and Z. Ye, “A single mesoporous ZnO/Chitosan hybrid nanostructure for a novel free nanoprobe type biosensor,” Biosensors and Bioelectronics, vol. 43, pp. 226-230, 2013.
[115] L. Liu, L. Fu, Y. Liu, Y. Liu, P. Jiang, S. Liu, M. Gao, and Z. Tang, “Bioinspired synthesis of vertically aligned ZnO nanorod arrays: Toward greener chemistry,” Crystal Growth & Design, vol. 9, no. 11, pp. 4793-4796, 2009.
[116] S. Ghosh, G. G. Khan, S. Varma, and K. Mandal, “Influence of film thickness and oxygen partial pressure on cation-defect-induced intrinsic ferromagnetic behavior in luminescent p-type Na-doped ZnO thin films,” ACS applied materials & interfaces, vol. 5, no. 7, pp. 2455-2461, 2013.
[117] C. Wang, X. Tan, S. Chen, R. Yuan, F. Hu, D. Yuan, and Y. Xiang, “Highly-sensitive cholesterol biosensor based on platinum–gold hybrid functionalized ZnO nanorods,” Talanta, vol. 94, pp. 263-270, 2012.
[118] A. Umar, M. Rahman, M. Vaseem, and Y.-B. Hahn, “Ultra-sensitive cholesterol biosensor based on low-temperature grown ZnO nanoparticles,” Electrochemistry Communications, vol. 11, no. 1, pp. 118-121, 2009.
[119] L. Li, Y. Wang, L. Pan, Y. Shi, W. Cheng, Y. Shi, and G. Yu, “A nanostructured conductive hydrogels-based biosensor platform for human metabolite detection,” Nano letters, vol. 15, no. 2, pp. 1146-1151, 2015.
[120] A. Ali, A. A. Ansari, A. Kaushik, P. R. Solanki, A. Barik, M. Pandey, and B. Malhotra, “Nanostructured zinc oxide film for urea sensor,” Materials Letters, vol. 63, no. 28, pp. 2473-2475, 2009.
[121] S. Abraham, N. R. Nirala, S. Pandey, M. Srivastava, S. Srivastava, B. Walkenfort, and A. Srivastava, “Functional graphene–gold nanoparticle hybrid system for enhanced electrochemical biosensing of free cholesterol,” Analytical Methods, vol. 7, no. 9, pp. 3993-4002, 2015.
[122] R. Khan, A. Kaushik, P. R. Solanki, A. A. Ansari, M. K. Pandey, and B. Malhotra, “Zinc oxide nanoparticles-chitosan composite film for cholesterol biosensor,” Analytica chimica acta, vol. 616, no. 2, pp. 207-213, 2008.
[123] P. R. Solanki, A. Kaushik, A. A. Ansari, and B. Malhotra, “Nanostructured zinc oxide platform for cholesterol sensor,” Applied Physics Letters, vol. 94, no. 14, pp. 143901, 2009.
[124] R. Shabannia, “Vertically aligned ZnO nanorods on porous silicon substrates: Effect of growth time,” Progress in Natural Science: Materials International, vol. 25, no. 2, pp. 95-100, 2015.
[125] M. I. B. Utama, J. Zhang, R. Chen, X. Xu, D. Li, H. Sun, and Q. Xiong, “Synthesis and optical properties of II–VI 1D nanostructures,” Nanoscale, vol. 4, no. 5, pp. 1422-1435, 2012.
[126] J. Wang, X. Li, C. Teng, Y. Xia, J. Xu, D. Xie, L. Xiang, and S. Komarneni, “Ligand-directed rapid formation of ultralong ZnO nanowires by oriented attachment for UV photodetectors,” Journal of Materials Chemistry C, 2016.
[127] L. Yu, J. Wei, Y. Luo, Y. Tao, M. Lei, X. Fan, W. Yan, and P. Peng, “Dependence of Al 3+ on the growth mechanism of vertical standing ZnO nanowalls and their NO 2 gas sensing properties,” Sensors and Actuators B: Chemical, vol. 204, pp. 96-101, 2014.
[128] S. Bayan, and P. Chakraborty, “Secondary ion mass spectrometry and photoluminescence study on microstructural characteristics of chemically synthesized ZnO nanowalls,” Applied Surface Science, vol. 303, pp. 233-240, 2014.
[129] H.-Y. Lu, S.-Y. Chu, and S.-H. Cheng, “The vibration and photoluminescence properties of one-dimensional ZnO nanowires,” Journal of crystal growth, vol. 274, no. 3, pp. 506-511, 2005.
[130] R. Ullah, and J. Dutta, “Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles,” Journal of hazardous materials, vol. 156, no. 1, pp. 194-200, 2008.
[131] P. Yang, L. Deng, L. Zhang, and H. Yang, “Experimental and Numerical Evaluation on Optical Properties of Al‐Doped ZnO Film Materials,” Journal of the American Ceramic Society, vol. 97, no. 11, pp. 3549-3554, 2014.
[132] Z. Qiu, X. Yang, J. Han, P. Zhang, B. Cao, Z. Dai, G. Duan, and W. Cai, “Sodium‐Doped ZnO Nanowires Grown by High‐pressure PLD and their Acceptor‐Related Optical Properties,” Journal of the American Ceramic Society, vol. 97, no. 7, pp. 2177-2184, 2014.
[133] N. Al-Hardan, A. Jalar, M. A. Hamid, L. K. Keng, N. Ahmed, and R. Shamsudin, “A wide-band UV photodiode based on n-ZnO/p-Si heterojunctions,” Sensors and Actuators A: Physical, vol. 207, pp. 61-66, 2014.
[134] S.-H. Baek, G.-H. Nam, and I.-K. Park, “Morphology controlled growth of ZnAl-layered double hydroxide and ZnO nanorod hybrid nanostructures by solution method,” RSC Advances, vol. 5, no. 74, pp. 59823-59829, 2015.
[135] T. Beyer, and M. Tacke, “Antireflection coatings for PbSe diode lasers,” Applied physics letters, vol. 73, no. 9, pp. 1191-1193, 1998.
[136] M. Rajteri, M. Rastello, and E. Monticone, “Antireflection coatings for superconducting photodetectors,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 444, no. 1, pp. 461-464, 2000.
[137] C. Striemer, and P. Fauchet, “Dynamic etching of silicon for broadband antireflection applications,” Applied physics letters, vol. 81, no. 16, pp. 2980-2982, 2002.
[138] Y. Kanamori, and K. Hane, “Broadband antireflection subwavelength gratings for polymethyl methacrylate fabricated with molding technique,” Optical review, vol. 9, no. 5, pp. 183-185, 2002.
[139] P. Clapham, and M. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” 1973.
[140] K. W. Sun, S.-C. Huang, A. Kechiantz, and C.-P. Lee, “Subwavelength gratings fabricated on semiconductor substrates via E-beam lithography and lift-off method,” Optical and quantum electronics, vol. 37, no. 4, pp. 425-432, 2005.
[141] D. Wan, H. L. Chen, T. C. Tseng, C. Y. Fang, Y. S. Lai, and F. Y. Yeh, “Antireflective nanoparticle arrays enhance the efficiency of silicon solar cells,” Advanced Functional Materials, vol. 20, no. 18, pp. 3064-3075, 2010.
[142] Y. Zhao, J. Wang, and G. Mao, “Colloidal subwavelength nanostructures for antireflection optical coatings,” Optics letters, vol. 30, no. 14, pp. 1885-1887, 2005.
[143] M. Lipiński, P. Panek, Z. Świątek, E. Bełtowska, and R. Ciach, “Double porous silicon layer on multi-crystalline Si for photovoltaic application,” Solar Energy Materials and Solar Cells, vol. 72, no. 1, pp. 271-276, 2002.
[144] R. Guerrero-Lemus, C. Hernández-Rodrıguez, F. Ben-Hander, and J. Martınez-Duart, “Anodic and optical characterisation of stain-etched porous silicon antireflection coatings,” Solar energy materials and solar cells, vol. 72, no. 1, pp. 495-501, 2002.
[145] S. K. Srivastava, D. Kumar, P. Singh, M. Kar, V. Kumar, and M. Husain, “Excellent antireflection properties of vertical silicon nanowire arrays,” Solar Energy Materials and Solar Cells, vol. 94, no. 9, pp. 1506-1511, 2010.
[146] T. Ghong, Y. Kim, E. Ahn, E. Yoon, S. An, and G.-C. Yi, “Application of spectral reflectance to the monitoring of ZnO nanorod growth,” Applied Surface Science, vol. 255, no. 3, pp. 746-748, 2008.
[147] Y.-J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano letters, vol. 8, no. 5, pp. 1501-1505, 2008.
[148] J. Chen, and K. Sun, “Growth of vertically aligned ZnO nanorod arrays as antireflection layer on silicon solar cells,” Solar Energy Materials and Solar Cells, vol. 94, no. 5, pp. 930-934, 2010.
[149] L. Zhou, X. Yu, and J. Zhu, “Metal-core/semiconductor-shell nanocones for broadband solar absorption enhancement,” Nano letters, vol. 14, no. 2, pp. 1093-1098, 2014.
[150] X. Pu, J. Liu, J. Liang, Y. Xia, W. Feng, Y. Wang, and X. Yu, “Effective CdS/ZnO nanorod arrays as antireflection coatings for light trapping in c-Si solar cells,” RSC Advances, vol. 4, no. 44, pp. 23149-23154, 2014.
[151] W. Feng, J. Liu, and X. Yu, “Efficiency enhancement of mono-Si solar cell with CdO nanotip antireflection and down-conversion layer,” RSC Advances, vol. 4, no. 93, pp. 51683-51687, 2014.
[152] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, “Low‐temperature wafer‐scale production of ZnO nanowire arrays,” Angewandte Chemie International Edition, vol. 42, no. 26, pp. 3031-3034, 2003.
[153] M.-L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S.-Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization,” Optics letters, vol. 33, no. 21, pp. 2527-2529, 2008.
[154] S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid silicon nanocone–polymer solar cells,” Nano letters, vol. 12, no. 6, pp. 2971-2976, 2012.
[155] S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Applied Physics Letters, vol. 88, no. 20, pp. 203107, 2006.
[156] B.-K. Shin, T.-I. Lee, J. Xiong, C. Hwang, G. Noh, J.-H. Cho, and J.-M. Myoung, “Bottom-up grown ZnO nanorods for an antireflective moth-eye structure on CuInGaSe< sub> 2</sub> solar cells,” Solar Energy Materials and Solar Cells, vol. 95, no. 9, pp. 2650-2654, 2011.
[157] T. Smy, S. Dew, and R. Joshi, “Modeling 3D effects of substrate topography on step coverage and film morphology of thin metal films,” Thin Solid Films, vol. 415, no. 1, pp. 32-45, 2002.
[158] J. Song, and S. Lim, “Effect of seed layer on the growth of ZnO nanorods,” The Journal of Physical Chemistry C, vol. 111, no. 2, pp. 596-600, 2007.
[159] C. Kagan, D. Mitzi, and C. Dimitrakopoulos, “Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors,” Science, vol. 286, no. 5441, pp. 945-947, 1999.
[160] K. Liang, D. B. Mitzi, and M. T. Prikas, “Synthesis and characterization of organic-inorganic perovskite thin films prepared using a versatile two-step dipping technique,” Chemistry of materials, vol. 10, no. 1, pp. 403-411, 1998.
[161] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050-6051, 2009.
[162] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell,” Nanoscale, vol. 3, no. 10, pp. 4088-4093, 2011.
[163] L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, and M. Grätzel, “Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells,” Journal of the American Chemical Society, vol. 134, no. 42, pp. 17396-17399, 2012.
[164] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science, vol. 338, no. 6107, pp. 643-647, 2012.
[165] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, and J. E. Moser, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Scientific reports, vol. 2, 2012.
[166] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature, vol. 499, no. 7458, pp. 316-319, 2013.
[167] J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A. Chang, Y. H. Lee, H.-j. Kim, A. Sarkar, and M. K. Nazeeruddin, “Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nature Photonics, vol. 7, no. 6, pp. 486-491, 2013.
[168] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells,” Nano letters, vol. 13, no. 4, pp. 1764-1769, 2013.
[169] W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “High-performance photovoltaic perovskite layers fabricated through intramolecular exchange,” Science, pp. aaa9272, 2015.
[170] Q. Zhang, C. S. Dandeneau, X. Zhou, and G. Cao, “ZnO nanostructures for dye-sensitized solar cells,” Adv. Mater, vol. 21, no. 41, pp. 4087-4108, 2009.
[171] Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” Journal of applied physics, vol. 98, no. 4, pp. 041301, 2005.
[172] H. Tang, K. Prasad, R. Sanjines, P. Schmid, and F. Levy, “Electrical and optical properties of TiO2 anatase thin films,” Journal of Applied Physics, vol. 75, no. 4, pp. 2042-2047, 1994.
[173] H. Bae, M. Yoon, J. Kim, and S. Im, “Photodetecting properties of ZnO-based thin-film transistors,” Applied physics letters, vol. 83, no. 25, pp. 5313-5315, 2003.
[174] J. Zhang, and T. Pauporté, “Effects of Oxide Contact Layer on the Preparation and Properties of CH3NH3PbI3 for Perovskite Solar Cell Application,” The Journal of Physical Chemistry C, vol. 119, no. 27, pp. 14919-14928, 2015.
[175] F. Guo, H. Azimi, Y. Hou, T. Przybilla, M. Hu, C. Bronnbauer, S. Langner, E. Spiecker, K. Forberich, and C. J. Brabec, “High-performance semitransparent perovskite solar cells with solution-processed silver nanowires as top electrodes,” Nanoscale, vol. 7, no. 5, pp. 1642-1649, 2015.
[176] Z.-L. Tseng, C.-H. Chiang, and C.-G. Wu, “Surface Engineering of ZnO Thin Film for High Efficiency Planar Perovskite Solar Cells,” Scientific reports, vol. 5, 2015.
[177] X. Dong, H. Hu, B. Lin, J. Ding, and N. Yuan, “The effect of ALD-Zno layers on the formation of CH3NH3PbI3 with different perovskite precursors and sintering temperatures,” Chem. Commun., vol. 50, no. 92, pp. 14405-14408, 2014.
[178] J. Kim, G. Kim, T. K. Kim, S. Kwon, H. Back, J. Lee, S. H. Lee, H. Kang, and K. Lee, “Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol–gel ZnO electron collection layer,” Journal of Materials Chemistry A, vol. 2, no. 41, pp. 17291-17296, 2014.
[179] D. Liu, M. K. Gangishetty, and T. L. Kelly, “Effect of CH 3 NH 3 PbI 3 thickness on device efficiency in planar heterojunction perovskite solar cells,” Journal of Materials Chemistry A, vol. 2, no. 46, pp. 19873-19881, 2014.
[180] D. Liu, and T. L. Kelly, “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques,” Nature photonics, vol. 8, no. 2, pp. 133-138, 2014.
[181] Z. Liang, R. Gao, J.-L. Lan, O. Wiranwetchayan, Q. Zhang, C. Li, and G. Cao, “Growth of vertically aligned ZnO nanowalls for inverted polymer solar cells,” Solar Energy Materials and Solar Cells, vol. 117, pp. 34-40, 2013.
[182] S.-W. Kim, S. Fujita, M.-S. Yi, and D. H. Yoon, “Catalyst-free synthesis of ZnO nanowall networks on Si3N4/Si substrates by metalorganic chemical vapor deposition,” Applied physics letters, vol. 88, no. 25, pp. 253114, 2006.
[183] D. Pradhan, M. Kumar, Y. Ando, and K. Leung, “Efficient field emission from vertically grown planar ZnO nanowalls on an ITO–glass substrate,” Nanotechnology, vol. 19, no. 3, pp. 035603, 2008.
[184] S. Kim, H. Park, M. Yi, N. Park, J. Park, S. Kim, S. Maeng, C. Choi, and S. Moon, “Epitaxial growth of ZnO nanowall networks on GaN/sapphire substrates,” Applied physics letters, vol. 90, no. 3, pp. 033107, 2007.
[185] C.-H. Lee, Y.-J. Kim, J. Lee, Y. J. Hong, J.-M. Jeon, M. Kim, S. Hong, and G.-C. Yi, “Scalable network electrical devices using ZnO nanowalls,” Nanotechnology, vol. 22, no. 5, pp. 055205, 2011.
[186] J. Zhang, P. Barboux, and T. Pauporté, “Electrochemical Design of Nanostructured ZnO Charge Carrier Layers for Efficient Solid‐State Perovskite‐Sensitized Solar Cells,” Advanced Energy Materials, vol. 4, no. 18, 2014.
[187] D.-Y. Son, J.-H. Im, H.-S. Kim, and N.-G. Park, “11% efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system,” The Journal of Physical Chemistry C, vol. 118, no. 30, pp. 16567-16573, 2014.
[188] A. K. Chandiran, M. Abdi-Jalebi, A. Yella, M. I. Dar, C. Yi, S. A. Shivashankar, M. K. Nazeeruddin, and M. Grätzel, “Quantum-confined ZnO nanoshell photoanodes for mesoscopic solar cells,” Nano letters, vol. 14, no. 3, pp. 1190-1195, 2014.
[189] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells,” Nature materials, 2014.
[190] M. Grätzel, “The light and shade of perovskite solar cells,” Nature materials, vol. 13, no. 9, pp. 838-842, 2014.
[191] E. J. Juarez-Perez, M. Wuβler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, and I. Mora-Sero, “Role of the selective contacts in the performance of lead halide perovskite solar cells,” The Journal of Physical Chemistry Letters, vol. 5, no. 4, pp. 680-685, 2014.
[192] J. Yang, B. D. Siempelkamp, E. Mosconi, F. De Angelis, and T. L. Kelly, “Origin of the Thermal Instability in CH3NH3PbI3 Thin Films Deposited on ZnO,” Chemistry of Materials.
[193] J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T.-B. Song, C.-C. Chen, S. Lu, Y. Liu, and H. Zhou, “Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility,” 2014.
[194] Q. Chen, H. Zhou, T.-B. Song, S. Luo, Z. Hong, H.-S. Duan, L. Dou, Y. Liu, and Y. Yang, “Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells,” Nano letters, vol. 14, no. 7, pp. 4158-4163, 2014.