簡易檢索 / 詳目顯示

研究生: 徐亞丘
Shiu, Ya-Chiou
論文名稱: 適用於一類具有內部連結之未知大尺度資料取樣非線性系統之輸入限制與致動器錯誤的容錯軌跡追蹤器
Fault-Tolerant Tracker for a Class of Unknown Interconnected Large-Scale Sampled-Data Nonlinear Systems with Input Constraint and Actuator Failure
指導教授: 蔡聖鴻
Tsai, Sheng-Hong Jason
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 67
中文關鍵詞: 預測控制分散式容錯觀測器/卡爾曼濾波器鑑別軟切換方式數位再設計
外文關鍵詞: Predictive control, fault-tolerant control, observer/Kalman filter identification (OKID), soft switching method
相關次數: 點閱:111下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一種適用於一類具有內部連結,輸入限制與制動器錯誤之未知大尺度資料取樣非線性系統的分散式容錯軌跡追蹤器;此軌跡追蹤器是以模型預測控制和軟切換方法及觀測器/卡爾曼濾波器鑑別方法為其理論基礎。首先利用離線的觀測器/卡爾曼濾波器鑑別方法計算出資料取樣非線性系統之適當階數(或低階)的分散式線性觀測器。為了克服模組誤差,接下來提出一個具有高增益特性的分散式數位再設計之線性觀測器設計方法,然後藉由鑑別出來的觀測器來設計多組模型預測控制器。當偵測到任一子系統中有控制器失效,備用的控制器利用軟切換方式去取代原先的控制器。所提出之分散式容錯軌跡追蹤器可以具有閉迴路解藕特性且有良好的軌跡追蹤效果。

    This thesis presents the decentralized fault-tolerant tracker based on the model predictive control (MPC) and the soft switching method for a class of unknown interconnected large-scale multi-input multi-output (MIMO) sampled-data nonlinear systems with input constraint, actuator failure and closed-loop decoupling property via observer/Kalman filter identification (OKID) method. The off-line OKID method is utilized to determine decentralized appropriate (low-) order discrete-time linear models for the class of unknown interconnected large-scale sampled-data systems by using known input-output sampled data. Then, to overcome the effect of modeling error on the identified linear model of each subsystem, an improved observer with the high-gain property based on the digital redesign approach will be presented. So, decentralized multiple MPC controllers are designed beforehand by using the identified linear models. Once fault is detected in each decentralized controller, one of the backup control configurations in each decentralized subsystem is switched to using the soft switching approach. Thus, the decentralized fault-tolerant control with the closed-loop decoupling property can be achieved through the above approach with high-gain property decentralized observer/tracker.

    摘要 I Abstract II Acknowledgments III List of Contents IV List of Figures VI Chapter 1. Introduction 1-1 2. Problem Description 2-1 3. Observer/Kalman Filter Identification 3-1 3.1 Basic observer equation 3-2 3.2 Computation of Markov parameters 3-4 3.3 Eigensystem realization algorithm 3-7 3.4 Relationship to Kalman filter 3-9 3.5 Digital redesign of prediction-based observer 3-13 4. Model Predictive Control 4-1 4.1 Discrete-time predictive control of MIMO systems 4-2 4.1.1 Prediction of state and output variables 4-2 4.1.2 Optimization 4-4 4.1.3 Discrete-time MPC using Laguerre functions 4-5 4.1.4 Use of Laguerre functions in DMPC design 4-7 4.2 Constrained Control Using Laguerre Functions 4-9 4.3 Soft switching method 4-10 4.4 Design procedure 4-12 5. Illustrative example 5-1 6. Conclusion 6-1 References R-1

    [1] G. Tao, S. M. Joshi, X. L. Ma, “Adaptive state feedback and tracking control of systems with actuator failures,” IEEE Trans. Automatic Control, vol. 46, no. 1, 78-95, 2001.
    [2] J. S. H. Tsai, C. L. Wei, S. M. Guo, L. S. Shieh, and C. R. Liu, "EP-based adaptive tracker with observer and fault estimator for nonlinear time-varying sampled- data systems against actuator failures," Journal of the Franklin Institute-Engineering and Applied Mathematics, vol. 345, pp. 508-535, 2008.
    [3] J. D. Boskovic, S. H. Yu, R. K. Mehra, “A stable scheme for automatic control reconfiguration in the presence of actuator failures,” Proceedings of Ameriacan Control Conference, Philadelphia, Pennsylvania, 2455-2459, 1998.
    [4] Y. M. Zhang, J. Jiang, “Integrated active fault- tolerant control using IMM approach,” IEEE Trans. on Aerospace and Electronic Systems, vol. 37, no. 4, 1221- 1235,2001.
    [5] F. Liao, J. Wang, G. Yang, “Reliable robust flight tracking control: An LMI approach,” IEEE Trans. Control Syst. Technol., vol. 10, no. 1,pp. 76–89, Jan. 2002.
    [6] Q. Zhao, J. Jiang, “Reliable state feedback control system design against actuator failures,” Automatica, vol. 34, no. 10, pp. 1267–1272, Oct. 1998.
    [7] G. H. Yang, J. L. Wang, Y. C. Soh, “Reliable controller design for linear systems,” Automatica, vol. 37, no. 5, 717725, 2001.
    [8] J. M. Maciejowski, “Reconfiguring control system by optimization,” European Control Conference, Brussel, 1997.
    [9] M. Abdel-Geliel, E. Badreddin, and A. Gambier, “Application of Model Predictive Control for fault tolerant system using dynamic safely margin,” Proc. of American Control Conference, 2006, Minneapolis, Minnesota, USA.
    [10] B. L. Ho and R. E. Kalman, “Effective construction of linear state-variable models from input-output data,” in Proc. 3rd Ann. Allerton Conf. on Circuits Syst. Theory, Monticello, IL, 1965, pp. 449-459.
    [11] J. N. Juang and R. S. Pappa, “Effects of noise on modal parameters identified by the eigensystem realization algorithm”, J. Guid., Contr. Dyn, vol. 3, pp. 294-303, 1986.
    [12] J. N. Juang, Applied System Identification, Englewood Cliffs. NJ, Prentice-Hall, 1994.
    [13] J. N. Juang, M. Q. Phan, L. G. Horta, and R. W. Longman, “Identification of observer/Kalman filter Markov parameters: Theory and experiments,” J. Guid., Contr. Dyn, vol. 16, pp. 320-329, 1993.
    [14] Wang, J., M. Grochowski and M. A. Brdys, “Analysis and design of softly switched model predictive control.” In Proc. of the 16th IFAC World Congress on Automatic Control, Prague, Czech Republic, Jul. 2005.
    [15] Guo, S. M. and Peng, Z. H., “An observer-based decentralized tracker for sampled-data systems: an evolutionary programming approach,” International Journal of General Systems, vol. 34, pp.421-449, 2005.

    下載圖示 校內:2012-07-23公開
    校外:2012-07-23公開
    QR CODE