| 研究生: |
黃昭瑜 Huang, Zhao-Yu |
|---|---|
| 論文名稱: |
全天型靜電分析儀在月球白天環境的初步熱分析 Preliminary thermal analysis of A-ESA(All-sky Electrostatic Analyzer) for the lunar daytime environment |
| 指導教授: |
張滋芳
Chang, Tzu-Fang |
| 共同指導教授: |
洪宗彬
Hung, Tsung-Pin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 太空與電漿科學研究所 Institute of Space and Plasma Sciences |
| 論文出版年: | 2023 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 月球溫度環境 、熱傳學 、有限元素法分析 、全天靜電分析儀 、太空儀器熱控 |
| 外文關鍵詞: | Lunar Thermal Environment, Heat Transfer, Finite Element Analysis, All-sky Electrostatic Analyzer, Spacecraft Thermal Control |
| 相關次數: | 點閱:56 下載:16 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文對月球白天環境下的全天靜電分析儀(A-ESA, All-sky Electrostatic Analyzer)進行了初步熱分析。A-ESA基於頂帽型靜電分析儀原型,是一款設計用於測量月球電漿分佈函數、粒子通量和相關帶電粒子能量的儀器。由於A-ESA要安裝在月球漫遊車上,因此會暴露在當地的熱環境中。月球白天有14天的陽光照射,夜間有14天的黑暗,月表溫度環境是出了名的嚴苛。在月球赤道,日間最高氣溫在太陽頂峰時可達約1200C,在黎明或黃昏時降至約-1400C。由於漫遊車目前的設計不允許A-ESA在夜間運作,因此論文的研究範圍僅限於月球白天的溫度環境。
本研究通過有限元法熱模擬探討了現有A-ESA設計的熱性能,找出現有熱設計中可能存在的問題以及合適的登陸的月球緯度。模擬中使用A-ESA的簡化版CAD模型,以省略初步設計階段不需要的細節。從赤道到極地地區的月球各緯度的溫度條件都被納入模擬設置中。研究結果發現,在現有的工作溫度限制下,在中低緯度地區(00~600),A-ESA只能在黎明或黃昏運做;其餘時間的環境熱負載對於A-ESA來說根本無法承受。然而,研究發現當A-ESA在高緯度地區(750以上)的溫度環境時,能夠在整個月球白天運行。這些發現指出,A-ESA目前的熱設計使其成為適合探索月球極區電漿環境的儀器。
In this thesis, a preliminary thermal analysis of the A-ESA(All-sky Electrostatic Analyzer) in the lunar daytime environment is presented. Based off the archetype of the Top-hat ESA, A-ESA is an instrument designed to measure the lunar plasma distribution function, flux, and the associated charged particle energy. Since A-ESA is to be mounted on a lunar rover, it will inevitably be exposed to the local thermal environment. With 14 days of sunlight exposure in the daytime and 14 days of darkness during the nighttime, the lunar thermal environment is notoriously harsh. At the equator, the maximum daytime temperature can reach up to approximately 1200C at solar peak and drop to around -1400C at dawn or dusk. The current design of the rover doesn’t allow nighttime operation so the scope of the thesis work is limited to daytime only.
The thermal performance of the current A-ESA design is investigated via FEM(Finite Element Method) simulation in the thesis work to identify the possible faults in the current thermal design and the suitable landing latitudes. A simplified CAD model of A-ESA is used in the simulations to purposely omit the unneeded details in this preliminary design stage. Thermal conditions of various lunar latitudes, from the equator to the polar regions, were taken into simulation settings. It was found that at mid-to-low latitude regions(00 ~ 600), A-ESA is only allowed to operate at dawn or dusk under the given operating temperature limits. The environmental heat load during the rest of the day is simply unbearable to A-ESA. However, A-ESA was found to be capable of operating in the high-latitude regions( above 750) throughout the entire lunar daytime. These findings suggest that the current thermal design of A-ESA makes it a suitable candidate for the exploration of the lunar polar plasma environment.
[1] Park T-Y, Lee J-J, Kim J-H, Oh H-U. Preliminary Thermal Design and Analysis of Lunar Lander for Night Survival. International Journal of Aerospace Engineering. October 2018:1-13. doi:10.1155/2018/4236396
[2] Temperature Ranges. (2023). Renesas. https://www.renesas.com/us/en/support/technical-resources/temperature-ranges
[3] Jeannette Plante and Brandon Lee. (2004). Dynamic Range Corporation. Environmental Conditions for Space Flight Hardware – A Survey For the NASA Electronic Parts and Packaging (NEPP) Program.
[4] D. G. Gilmore. (2002) Spacecraft Thermal Control Handbook Volume 1: Fundamental Technologies, El Segundo Boulevard: The Aerospace Press.
[5] Spacecraft Thermal Radiators. (2023). AASC. https://www.aascworld.com/portfolio/thermal-radiator/
[6] CNES / Israelian Space Agency Vénus Satellite. (2018). Aof-Maquettes. https://aof-maquettes.fr/en/reference/cnes-venus/
[7] Vacuum Super Insulation with High Temperature MLI. (2019). ConceptGroupllc. https://conceptgroupllc.com/mli-takes-our-high-temp-vacuum-insulation-to-the-next-level/
[8] Kang, C. (1998). Multilayer Insulation for Spacecraft Applications. COSPAR Colloquia Series, 10, 175-179.
[9] TYPES OF INFRARED HEAT. (2018). Herschel-Infrared. https://www.herschel-infrared.co.uk/how-do-infrared-heaters-work/types-of-infrared-heat/
[10] Altamura, G. (2014). Development of CZTSSe thin films based solar cells (Doctoral dissertation, Université Joseph-Fourier-Grenoble I).
[11] Multi-Layer Insulation Films and Tapes from DUNMORE Protect ESA’s Rosetta Mission for Over 10 Years in Space. (2014). Prweb. https://www.prweb.com/releases/multi_layer_insulation_films_and_tapes_from_dunmore_protect_esa_s_rosetta_mission_for_over_10_years_in_space/prweb12316545.htm
[12] Miao, J., Zhong, Q., Zhao, Q., & Zhao, X. (2021). Spacecraft thermal control technologies. Singapore: Springer.
[13] LRO DIVINER Lunar Radiometer Experiment. (2023). Ucla. https://www.diviner.ucla.edu/science
[14] Paige, D.A., Foote, M.C., Greenhagen, B.T. et al. (2010). The Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment. Space Sci Rev 150, 125–160. https://doi.org/10.1007/s11214-009-9529-2
[15] Mitchell, D. L., & de Pater, I. (1994). Microwave Imaging of Mercury's Thermal Emission at Wavelengths from 0.3 to 20.5 cm. Icarus, 110(1), 2-32.
[16] Vasavada, A. R., Paige, D. A., & Wood, S. E. (1999). Near-Surface Temperatures on Mercury and the Moon and the Stability of Polar Ice Deposits. Icarus, 141(2), 179-193.
[17] Miyahara, Hiroko & Wen, Guoyong & Cahalan, Robert & Ohmura, Atsumu. (2008). Deriving historical total solar irradiance from lunar borehole temperatures. Geophysical Research Letters. 35. 10.1029/2007GL032171.
[18] Heiken G Vaniman D French BM.( 1991). Lunar Sourcebook: A User's Guide to the Moon. Cambridge England: Cambridge University Press.
[19] Williams, J., Paige, D., Greenhagen, B., & Sefton-Nash, E. (2017). The global surface temperatures of the Moon as measured by the Diviner Lunar Radiometer Experiment. Icarus, 283, 300-325.
[20] Bhardwaj, A., Dhanya, M. B., Alok, A., Barabash, S., Wieser, M., Futaana, Y., Wurz, P., Vorburger, A., Holmström, M., Lue, C., Harada, Y., & Asamura, K. (2015). A new view on the solar wind interaction with the Moon. Geoscience Letters, 2(1), 1-15.
[21] Kazama, Y., Wang, B., Wang, S., Ho, P. T., Tam, S. W., Chang, T., Chiang, C., & Asamura, K. (2017). Low-energy particle experiments–electron analyzer (LEPe) onboard the Arase spacecraft. Earth, Planets and Space, 69(1), 1-13.
[22] Victor, Allen & Zurbuchen, Thomas & Gallimore, Alec. (2006). Top hat electrostatic analyzer for far-field electric propulsion plume diagnostics. Review of Scientific Instruments. 77. 10.1063/1.2165549.
[23] Li, C. & Wang, Y. & Zhang, H. & Li, S. & Liu, Z. & Zhao, C.. (2018). The analyzer constant of top hat electrostatic analyzer: Comparison between theory and simulations. Journal of Instrumentation. 13. P12027-P12027.
[24] Langmuir Probe And Waves Instrument for MAVEN Spacecraft. (2012). Nasa. https://mars.nasa.gov/resources/5175/langmuir-probe-and-waves-instrument-for-maven-spacecraft/
[25] Carlson, C., Curtis, D., Paschmann, G., & Michel, W. (1985). An instrument for rapidly measuring plasma distribution functions with high resolution. Advances in Space Research, 2(7), 67-70.
[26] Saito, Y., Yokota, S., Tanaka, T., Asamura, K., Nishino, M. N., Fujimoto, M., Tsunakawa, H., Shibuya, H., Matsushima, M., Shimizu, H., Takahashi, F., Mukai, T., & Terasawa, T. (2008). Solar wind proton reflection at the lunar surface: Low energy ion measurement by MAP-PACE onboard SELENE (KAGUYA). Geophysical Research Letters, 35(24). https://doi.org/10.1029/2008GL036077
[27] Cengel, Y. A., & Ghajar, A. J. (2014). Heat and mass transfer: Fundamentals and applications (5th ed.). McGraw-Hill Professional.
[28] Baudouy, Bertrand. (2015). Heat Transfer and Cooling Techniques at Low Temperature. CAS-CERN Accelerator School: Superconductivity for Accelerators - Proceedings. 10.5170/CERN-2014-005.329.
[29] Ginesu, Giaime & Giusto, Daniele & Märgner, Volker & Meinlschmidt, Peter. (2004). Detection of Foreign Bodies in Food by Thermal Image Processing. Industrial Electronics, IEEE Transactions on. 51. 480 - 490. 10.1109/TIE.2004.825286.
[30] Torrance, K. E., & Turcotte, D. L. (1971). Thermal convection with large viscosity variations. Journal of Fluid Mechanics, 47(1), 113-125.
[31] Ansys, the Global Leader in Engineering Simulation. (2019). Gfec-Production. https://www-gfec-production.onemacnica.com/en/products/software/ansys
[32] Radiation. (2020). Mechanical APDL 2020 R2 |Theory Reference|Heat Flow Fundamentals.https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/corp/v202/en/ans_thry/thy_heat1.html
[33] Chapman, A. J. (1984). Heat Transfer (4th ed.). New York, NY: Macmillan
[34] Ansys Mechanical: Composites, Vibration, Acoustics, Thermal Analysis, Crack and Fracture, Structural Optimization, Fatigue Life Analysis, Hydrodynamics (Ansys Aqwa). (2023). Enteknograte. https://enteknograte.com/ansys-mechanical-finite-element-analysis-fea-software-structural-engineering/
[35] Tripathi, P. M., Prakash, S., Singh, R., & Dwivedi, S. K. (2014). Thermal Analysis on Cylinder Head of SI Engine Using FEM. International Journal of Scientific Engineering and Research (IJSER), ISSN, 2347-3878.
[36] Popecki, M. A., et al. (2016), Microchannel plate fabrication using glass capillary arrays with Atomic Layer Deposition films for resistance and gain, J. Geophys. Res. Space Physics, 121, doi:10.1002/2016JA022580.
[37] Thermal Properties of Non-Metals. (2023). Engineersedge. https://www.engineersedge.com/heat_transfer/thermal_properties_of_nonmetals_13967.htm
[38] Lanc, Zorana & Strbac, Branko & Zeljković, Milan & Zivkovic, Aleksandar & Hadžistević, Miodrag. (2018). Emissivity of aluminium alloy using infrared thermography technique. Materiali in Tehnologije. 52. 10.17222/mit.2017.152.
[39] Benzley, S. E., Perry, E., Merkley, K., Clark, B., & Sjaardama, G. (1995, October). A comparison of all hexagonal and all tetrahedral finite element meshes for elastic and elasto-plastic analysis. In Proceedings, 4th international meshing roundtable (Vol. 17, pp. 179-191). Sandia National Laboratories Albuquerque, NM.
[40] James lewis. (2023). A PCB That Reflow Solders Itself and Then Self Propagates. Hackster.Io. https://www.hackster.io/news/a-pcb-that-reflow-solders-itself-and-then-self-propagates-66b1edffc10d
[41] Electrothermal Mechanical Stress Reference Design Flow for Printed Circuit Boards and Electronic Packages. (2021). Ansys. https://www.ansys.com/content/dam/product/electronics/wp-electrothermal-mechanical-stress-reference-design-flow-pcb-elec-packages.pdf
[42] Jessica eagan. (2013). “Snow White” Coating Protects SpaceX Dragon’s Trunk against Rigors of Space. Phys.Org. https://phys.org/news/2013-03-white-coating-spacex-dragon-trunk.html
[43] AZ-93 White Thermal Control, Inorganic Paint / Coating. (2023). Aztechnology. https://www.aztechnology.com/product/1/az-93
[44] NASA’s New Horizons Is on New Post-Pluto Mission. (2015). Voanews. https://www.voanews.com/a/nasa-new-horizons-is-on-new-post-pluto-mission/3018989.html
[45] Metallized Beta Cloth. (2023). Dunmore. https://www.dunmore.com/products/aluminized-beta-cloth.html
[46] 熱真空循環測試系統. (2023). D4spacelab. https://sites.google.com/isaps.ncku.edu.tw/spacelab/%E5%AF%A6%E9%A9%97%E8%A8%AD%E6%96%BD
[47] Park, R. M. (2010). Thermocouple fundamentals. Course Tech., Temp, 2-1.