| 研究生: |
馮昱翔 Feng, Yu-Hsiang |
|---|---|
| 論文名稱: |
GDSII 數據流轉碼至數位微影系統之曝光速度最佳化研究 Study of Exposure Speed Optimization for GDSII Data Stream Rendering to Digital Lithography System |
| 指導教授: |
賴槿峰
Lai, Chin-Feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系碩士在職專班 Department of Engineering Science (on the job class) |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 數位微影 、GDSII 、佈局設計最佳化 |
| 外文關鍵詞: | Digital lithography, GDSII, Layout design optimization |
| 相關次數: | 點閱:117 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
數位微影系統也稱無光罩微影系統,其中核心部件為數位微鏡面裝置(DMD),它可以控制微小鏡面進行圖形的曝光,其取代實體光罩,節省光罩的製作成本與時間,在圖形定義上也更加靈活。應用範圍包括半導體積體電路、平面顯示器、微光學元件和微機電等領域。本研究探討DMD 連續曝光圖案運行下,得到大量的圖像幀(pattern frame)數據,但需要很長的時間來計算曝光圖案成像(pattern image)。故旨在解決當數位光罩微影機台執行曝光的過程中,資料計算時間過久而造成的當機問題,因此提出了一種縮減光柵化(rasterization)的資料量方法,該方法使用GDSII 的檔案格式特性,將圖形打包成各單位元(cell) ,並將相同的單位元以陣列的方式展開,進而縮小資料量,使能夠在高速曝光運轉下,達到高品質的曝光圖案成像,並降低整體製程運作時間,增加生產效率。
The digital lithography system is also called as maskless lithography system. The core component is digital micro-mirror device, DMD, which can control the micro mirror for exposure pattern. It replaces the physical mask and saves the production cost and time of the mask. It is also more flexible for the design pattern. It can apply to semiconductor integrated circuits, flat-panel displays, micro-optical components, and micro-electromechanical fields. This study investigates the continuous exposure pattern operation of DMD, which obtains a large amount of pattern frame data, but requires a long time to calculate the exposure pattern image. The purpose of this study is to solve the crash problem caused by long data calculation time when the digital lithography system performs exposure. Therefore, a method for reducing the rasterization data volume is proposed. This method uses the file format characteristics of GDSII to package the polygons into cells, and expands the same cells into an array, thereby reducing the data. It can achieve high-quality exposure pattern imaging under high-speed exposure operation, reduce the overall process operation time, and increase production efficiency.
[1] A. Pimpin and W. Srituravanich. (2012). Review on micro- and nanolithography techniques and their applications. Engineering J, vol. 16, 37–55.
[2] 張勁燕. (2002). 半導體製程設備. 五南圖書出版公司, 56-107.
[3] Ito, T. & Okazaki, S. (2000). Pushing the limits of lithography. Nature, vol 406, 1027-1031.
[4] K. Jain, M. Klosner, M. Zemel and S. Raghunandan. (2005). Flexible electronics and displays: High-resolution roll-to-roll projection lithography and photoablation processing technologies for high-throughput production. Proc. IEEE, vol. 93, no. 8, 1500-1510.
[5] K. Mitzner, Complete PCB design using OrCAD Capture and PCB editor, Newnes, 2009.
[6] A. Wu, L. Wang, E. Jenson, R. Mathies and B. Boser. (2010). Modular integration of electronics and microfluidic systems using flexible printed circuit boards. Lab Chip, vol. 10, no. 4, 519-521.
[7] L. Guo and S. P. DeWeerth. (2010). High-Density Stretchable Electronics: Toward an Integrated Multilayer Composite. Advanced Materials, vol. 22, no. 36, 4030-4033.
[8] 陳靖函. (2020). 半導體用光阻劑之發展概況. 工研院 產業技術評析.
[9] J. Chen, J. Shi, A. Cattoni et al. (2010). A versatile pattern inversion process based on thermal and soft UV nanoimprint lithography techniques. Microelectronic Engineering, vol. 87, 899-903.
[10] C. A. Rothenbach and M. C. Gupta. (2012). High resolution, low cost laser lithography using a Blu-ray optical head assembly. Opt. Lasers Eng., vol. 50, no. 6, 900-904.
[11] M. Rahlves, M. Rczem, K. Boroz, S. Schlangen, E. Rcithmeier, and B. Roth. (2015). Flexible, fast, and low-cost production process for polymer based diffractive optics. Opt. Express, vol. 23, no. 3, 3614-3622.
[12] A. Alwaidh, M. Sharp and P. French. (2014). Laser processing of rigid and flexible PCBs. Opt. Lasers Eng., vol. 58, 109-113.
[13] H. Ihee, V. A. Lobastov, U. M. Gomez, B. M. Goodson, R. Srinivasan, C. Y. Ruan, et al. (2001). Direct imaging of transient molecular structures with ultrafast diffraction. Science, vol. 291, 458-462.
[14] J E E Baglin. (2012). Ion beam nanoscale fabrication and lithography-A review. Applied Surface Science, vol. 258, no. 9, 4103-4111.
[15] L. J. Guo. (2007). Nanoimprint lithography: Methods and material requirements. Adv. Mater., vol. 19, no. 4, 495-513.
[16] X. Y. Ding, Y. X. Ren and R. D. Lu. (2013). Maskless Microscopic Lithography through Shaping Ultraviolet Laser with Digital Micro-mirror Device. Optics and Photonics Journal, vol. 3, 227-231.
[17] R. Menon, A. Patel, D. Gil and H. I. Smith. (2005). Maskless lithography. Materials Today, 26-33.
[18] LumArray | Maskless Optical Lithography. Retrieved from https://www.lumarray.com/tech.htm(June. 6, 2022)
[19] D. J. D. Carter, D. Gil, R. Menon, I. J. Djomehri, and H. I. Smith. (1999). Zone-plate array lithography (ZPAL): a new maskless approach. Proc. SPIE, vol 3676, 324-332.
[20] Favalora, G., Hall, D.M., Giovinco, M., Napoli, J., & Dorval, R.K. (2001). A multi-megavoxel volumetric 3-D display system for distributed collaboration. In IEEE Globecom 2000 conference on application of virtual reality technologies for future telecommunication system workshop.
[21] Cryptographic hash function – Wikipedia. Retrieved from https://en.wikipedia.org/wiki/Cryptographic_hash_function (May. 16, 2022)
[22] Hash function - Wikipedia. Retrieved from https://en.wikipedia.org/wiki/Hash_function(Mar. 16, 2022)
[23] Avalanche Effect in Cryptography – GeeksforGeeks. Retrieved from https://www.geeksforgeeks.org/avalanche-effect-in-cryptography/(May. 17, 2022)
[24] R. Rivest. (1991). The MD4 message digest algorithm. Proc. Advances in Cryptology: Crypto '90, 303-311.
[25] R. Rivest. (1992). The MD5 message-digest algorithm. RFC 1321.
[26] B. den Boer and A. Bosselaers. (1994). Collisions for the compression function of md5. Workshop on the Theory and Application of Cryptographic Techniques on Advances in Cryptology ser. EUROCRYPT'93, 293-304.
[27] H. Dobbertin. (1996). Cryptanalysis of MD5 Compress. the proc. of Eurocrypt '96.
[28] X. Wang and H. Yu. (2005). How to break MD5 and other Hash functions. Proc. Eurocrypt., vol. 3494, 19-35.
[29] T. Xie, F. Liu and D. Feng. (2013). Fast collision attack on MD5. IACR Cryptology ePrint Archive, vol. 2013, 170.
[30] H. Dobbertin, A. Bosselaers and B. Preneel. (1996). RIPEMD-160: A strengthened version of RIPEMD. Proc. 3rd Fast Software Encryption Workshop, 71-82.
[31] V. Chiriaco, A. Franzen, R. Thayil and X. Zhang. (2016). Finding partial hash collisions by brute force parallel programming. Proc. IEEE 37th Sarnoff Symp., 1-6.
[32] X. Wang, Y. L. Yin and H. Yu. (2005). Finding collisions in the full SHA-1. Proc. 25th Annu. Int. Conf. Adv. Cryptol., 17-36.
[33] M. Stevens. (2012). New collision attacks on SHA-1 based on optimal joint local-collision analysis." Lecture Notes in Computer Science, vol. 7881, 245-261.
[34] M. Stevens, P. Karpman and T. Peyrin. (2016). Freestart collision for full SHA-1. Annual International Conference on the Theory and Applications of Cryptographic Techniques, 459-483.
[35] K. Wu, Y. Li, L. Chen and Z. Wang. (2015). Research of integrity and authentication in OPC UA communication using whirlpool hash function. Appl. Sci., vol. 5, no. 3, 446-458.
[36] S. Verma and G. S. Prajapati. (2016). Robustness and security enhancement of SHA with modified message digest and larger bit difference. Proc. Symp. Colossal Data Anal. Netw. (CDAN), 0-4.
[37] N. Kishore and B. Kapoor. (2016). Attacks on and advances in secure hash algorithms. IAENG Int. J. Comput. Sci, vol. 43, no. 3, 326-335.
[38] Hash Functions | CSRC (nist.gov). Retrieved from https://csrc.nist.gov/projects/hash-functions(May. 18, 2022)
[39] I. Dinur, O. Dunkelman and A. Shamir. (2012). New attacks on Keccak-224 and Keccak-256. Proc. Int. Workshop Fast Softw. Encryption, pp. 442-461.
[40] I. Dinur, O. Dunkelman and A. Shamir. (2014). Collision attacks on up to 5 rounds of SHA-3 using generalized internal differentials. Fast Software Encryption, vol. 8424, 219-240.
[41] K. F. Chan, Z. Feng, R. Yang, A. Ishikawa and W. Mei. (2003). High-resolution maskless lithography. J. Micro/Nanolithography, vol. 2, no. 4, pp. 331-339.
[42] K. Zhong, Y. Gao, F. Li. (2013). Maskless lithography Based on DMD. Engineering Materials, Vol. 552, 207-213.
[43] R. M. Guijt and M. C. Breadmore. (2008). Maskless photolithography using UV LEDs. Lab-Chip, vol. 8, 1402-1404.
[44] R. Fabian Pease. (2005). Maskless lithography. Microelectronic Engineering, vol 78-79, 381-392.
[45] E. Croffie, N. Eib, N. Callan, N. BabaAli, A. Latypov, J. Hintersteiner, T. Sandström, A. Bleeker, K. Cummings. (2003). Application of Rigorous Electromagnetic Simulation to SLM-based Maskless Lithography for 65nm Node. Proc. SPIE, vol. 5256, 842-850.
[46] Z. Xiong, H. Liu, X. Q. Tan, Z. W. Lu, C. X. Li, L. W. Song, and Z. Wang. (2014). Diffraction analysis of digital micromirror device in maskless photolithography system. Journal of Micro/Nanolithography, MEMS, and MOEMS 13(4), 043016.
[47] J. M. Florence and L. A. Yoder. (1996). Display system architectures for digital micromirror device (DMD™) based projectors. Proc. SPIE, vol. 2650, pp. 193-208.
[48] F. Wippermann, U. Zeitner, P. Dannberg and A. B. S. Sinzinger. (2007). Beam homogenizers based on chirped microlens arrays. Opt. Exp., vol. 15, no. 10, 6218-6231.
[49] Y. Gong and S. Zhang. (2010). Ultrafast 3-D shape measurement with an off-the-shelf DLP projector. Opt. Express, vol. 18, no. 19, 19743-19754.
[50] C. Peng et al. (2019). A high-speed exposure method for digital micromirror device based scanning maskless lithography system. Optik, vol. 185, pp. 1036-1044.
[51] Wang Z., Yang W., Qin Y., Liang W., Yu H., Liu L. (2021). Digital Micro-mirror Device -based Light Curing Technology and its Biological Applications. Opt. Laser Technol. 143, 107344. 10.1016/j.optlastec.2021.107344.
[52] E. Pruett. (2015). Latest developments in Texas Instruments DLP near-infrared spectrometers enable the next generation of embedded compact portable systems. Proc. Next-Gener. Spectroscopic Technol. VIII, vol. 9482.
[53] S.-H. Voss, M. Talmi, J. Saniter, J. Eindorf, A. Reisig and J. Heinitz. (2005). High-speed data storage and processing for projection mask-less lithography systems. Microelectronic Engineering Journal, vol. 83, no. 4-9, 976-979.
[54] L. H. Erdmann, A. Deparnay, F. Wirth, and R. Brunner. (2004). MEMS-based lithography for the fabrication of micro-optical components. Proc. SPIE 5347, 79-84.
[55] P. Paul, A. W. Knoll, F. Holzner and U. Duerig. (2012). Field stitching in thermal probe lithography by means of surface roughness correlation. Nanotechnology, vol. 23, no. 38, 385307.
[56] X. Guo, Y. Liu. (2010). Improving the imaging quality of MOEs in DMD-based maskless lithography. Microelectron. Eng., 87, 1100-1103.
[57] H Ryoo, D W Kang, Y T Song et al. (2012). Experimental analysis of pattern line width in digital maskless lithography. Journal of Micro/Nanolithography MEMS and MOEMS, vol. 11, no. 2, 023004-1.
[58] C. Liu et al. (2005). Imaging simulation of maskless lithography using a DMD. Proc. SPIE, vol. 5645, 307-314.
[59] K. Zhong, Y. Gao, F. Li, N. Luo and W. Zhang. (2014). Fabrication of continuous relief micro-optic elements using real-time maskless lithography technique based on DMD. Opt. Laser Technol., vol. 56, 367-371.
[60] Rasterisation – Wikipedia. Retrived from https://en.wikipedia.org/wiki/Rasterisation(June. 20, 2022).
[61] GDSII | LayoutEditor Documentation. Retrived from https://www.layouteditor.org/layout/file-formats/gdsii(June. 20, 2022).
[62] GDS Stream Format. Restrived from https://www.raind.blog/technique_news-zh/technique_news_gds_stream_format.html (June. 20, 2022).
[63] A. Maetouq, S. Daud, N. Ahmad, N. Maarop, N. Sjarif and H. Abas. (2018). Comparison of hash function algorithms against attacks: A review. Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 8, 98-103.
[64] R. Bogue. (2007). MEMS sensors: Past present and future. Sens. Rev., vol. 27, no. 1, pp. 7-13.
[65] DLP9000 data sheet, product information and support | TI.com. Retrived from https://www.ti.com/product/DLP9000(June. 19, 2022).
[66] hashlib - Secure hashes and message digests - Python 3.10.4 documentation. Retrieved from https://docs.python.org/3/library/hashlib.html (June. 15, 2022).
[67] KLayout Layout Viewer And Editor. Restrived from https://www.klayout.de/doc/code/class_Cell.html(June. 1, 2022).
[68] KLayout The XOR Tool. Restrived from https://www.klayout.de/doc/manual/xor.html(Mar. 3, 2022).
[69] algorithm - Space & Time Complexity of SHA-2 - Stack Overflow. Retrived from https://stackoverflow.com/questions/47557136/space-time-complexity-of-sha-2(June. 5, 2022).
[70] TimeComplexity - Python Wiki. Restrived from https://wiki.python.org/moin/TimeComplexity(June. 4, 2022).
校內:2027-08-10公開