| 研究生: |
簡偉雄 Kan, Wai-Hong |
|---|---|
| 論文名稱: |
應用高電壓時域量測方式於鋯鈦酸鉛致動器電性等效電路模型之研究 Electrical Model of Lead Zirconate Titanate Actuator by High-voltage Time-domain Measurement |
| 指導教授: |
張凌昇
Jang, Ling-Sheng 陳明坤 Chen, Ming-Kun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 46 |
| 中文關鍵詞: | 鋯鈦酸鉛 、時域量測 、電性模型 、生物微機電 、電路最佳化 、微流體系統 、壓電微型幫浦 |
| 外文關鍵詞: | micro-fluidic system, piezoelectric micropump, lead zirconate titanate, BioMEMS, PZT, equivalent model, time-domain measurement |
| 相關次數: | 點閱:153 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,生物微機電系統 (BioMEMS) 與微流體系統的完整整合,以鋯鈦酸鉛 (PZT) 作為動力來源的壓電微型幫浦及相關之致動器因此應運而生。此外,為了使微幫浦可在不同場所被使用,可攜式微幫浦系統成為微幫浦系統的發展趨勢。為達到可攜化之目的,微幫浦驅動電路需滿足低功率消耗的要求。因此,發展適合的PZT電性等效電路可提供一些最佳化微幫浦驅動電路的方向。
本研究提出一個以時域量測為基礎的新量測技術,以高電壓、低頻率之方波訊號,激發在微幫浦上之PZT,藉此取得被修改的BVD電性模型的不同參數。此模型已經過MATLAB作驗證,其模擬結果與實驗結果具一致性。另外亦會指出以此量測技術,可預測微幫浦驅動電路最佳化的發展方向,以及可用以開發篩選生產之微幫浦的方法。
Biological microelectromechanical systems (BioMEMS) and micro-fluidic systems have been fully integrated in recent years for development of various actuators such as piezoelectric micropumps that generally use lead zirconate titanate (PZT) as the force source to pump fluid. To expand the applications, a portable micropump system is required and low power consumption of micropump driving circuit is important. Therefore, a suitable electrical PZT model is needed to optimize the driving circuit. This study presents a novel time-domain measurement technique to extract parameters in a modified BVD model, which describes an electrical equivalent model when excited by a square pulse with relatively high voltage and low frequency for a PZT micropump. Verification of the extracted model is accomplished using MATLAB for solving the ordinary differential equations in this model. Simulation results agree with experimental results. Furthermore, the measurement technique employed in this study can predict trends of developments in the driving circuit optimization and is useful for evaluating micropumps.
[1] P. & J. Curie, “Comptes Rendus”, 91, 294, 1880.
[2] W.G. Hankel, “Abh. Sächs.”, 12, 457, 1881.
[3] G.. Lippmann, “Annales de Physique et de Chimie”, 5th Series, 24, 145, 1881.
[4] W. Voigt, “Lehrbuch der Kristallphysik.”, B.G.. Teubner, Leipzig, Berlin, 1910.
[5] S. Roberts, Physical review, 71, 890, 1947.
[6] W.P. Mason, “Piezoelectric crystals and their applications to ultrasonics”, Van Nostrand, New York, 1950.
[7] E. Sawaguchi, Journal of the physical society of Japan, 8, 615, 1953.
[8] B. Jaffe, R.S. Roth and S. Marzullo, Journal of research of the national bureau of standards, 55, 239, 1955.
[9] N.T. Nguyen, X.Y. Huang, T.K. Chuan, “MEMS-micropumps: a review”, Journal of fluids engineering-transactions of the Asme, 124 (2), 384-392, 2002.
[10] R. Bashir , “BioMEMS: state-of-the-art in detection, opportunities and prospects”, Advanced drug delivery reviews, 56 (11), 1565-1586, 2004.
[11] N. Setter, D. Damjanovic, L. Eng, et al., “Ferroelectric thin films: review of materials, properties, and applications”, Journal of applied physics, 100 (5), Art. no. 051606, 2006.
[12] P. Muralt, “Ferroelectric thin films for micro-sensors and actuators: a review”, Journal of micromechanics and microengineering, 10 (2), 136-146, 2000.
[13] D.J. Laser, J.G. Santiago, “A review of micropumps”, Journal of micromechanics and microengineering, 14 (6), R35-R64, 2004.
[14] H. Andersson, W. van der Wijngaart, P. Nilsson, et al., “A valve-less diffuser micropump for microfluidic analytical systems”, Sensors and actuators B-chemical, 72 (3), 259-265, 2001.
[15] W.P. Mason, “Electromechanical transducers and wave filters”, Van Nostrand, New York, 1948.
[16] M. Redwood, “Transient performance of a piezoelectric transducer”, Journal of the acoustical society of america, 33 (4), pp. 527-536, 1961.
[17] R. Kirmholtz, D.A. Leedom, G.L. Mathaei, “New equivalent circuit for elementary piezoelectric transducers”, Electronic letters, 6 (3), pp.398-399, 1970.
[18] IEEE Std 177, “Standard definitions and methods of measurement for piezoelectric vibrators”, 1978.
[19] IEC, “easurement of quartz crystal unit parameters by zero phase technique in a pi-network (Part 1)”, International electrotechnical commission-IEC standard, publication, 44-1, 1986.
[20] A. Arnau, T. Sogorb, Y. Jiménez, “A continuous motional series resonant frequency monitoring circuit and a new method of determining Butterworth-Van Dyke parameters of a quartz crystal microbalance in fluid media”, Review of scientific instruments, 71 (6), 2563-2571, 2000.
[21] M. Rodahl, B. Kasemo, “A simple setup to simultaneously measure the resonant frequency and the absolute dissipation factor of a quartz crystal microbalance”, Review of scientific instruments, 67 (9), 3238-3241, 1996.
[22] M. Rodahl, B. Kasemo, “Frequency and dissipation-factor responses to localized liquid deposits on a QCM electrode”, Sensors and actuators B-chemical, 37 (1-2), 111-116, 1996.
[23] M. Rodahl, F. Hook, B. Kasemo, “QCM operation in liquids: An explanation of measured variations in frequency and Q factor with liquid conductivity”, Analytical chemistry, 68 (13), 2219-2227, 1996.
[24] IEEE Std 176, “IEEE standard on piezoelectricity”, 1987.
[25] D.A. Hall, “Review nonlinearity in piezoelectric ceramics”, Journal of materials science, 36 (19), 4575-4601, 2001.
[26] V.E. Bottom, “Introduction to quartz crystal unit design”, Van Nostrand, New York, 1982.
[27] W.G. Cady, “Piezoelectricity (An introduction to the theory and applications of electromechanical phenomena in crystals)”, Dover publication, Inc., New York, 1964.
[28] C.E. Reed, K.K. Kanazawa, J.H. Kaufman, “Physical description of a viscoelastically loaded at-cut quartz resonator”, Journal of applied physics, 68 (5), 1993-2001, 1990.
[29] J.F. Rosenbaum, “Bulk acoustic wave theory and devices”, Artech house, inc., Boston, 1988.