| 研究生: |
陳炳宏 Chen, Bing-Hung |
|---|---|
| 論文名稱: |
磷化銦鎵/砷化鎵異質接面雙載子電晶體之
參數萃取與大訊號模型建立 Parameter Extraction and Large Signal Model Establishment of InGaP/GaAs HBTs |
| 指導教授: |
蘇炎坤
Su, Yan-Kuin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | 模型 、大訊號 、磷化銦鎵 、參數 、萃取 、異質接面雙載子電晶體 |
| 外文關鍵詞: | HBT, Model, Large Signal, Extraction, Parameter, InGaP |
| 相關次數: | 點閱:103 下載:50 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在針對磷化銦鎵/砷化鎵異質接面雙載子電晶體參數的萃取及其小訊號到大訊號之模型的建立。這當中我們也考慮了元件操作時的熱效應現象和在功率操作的非線性區應用。
本次實驗的模型以Gummel-Poon Model 為主,我們再另外加入一些參數來幫助我們模擬熱效應現象,以達到正確模擬異質接面電晶體的要求。同時,為了得到一個準確的大訊號模型,我們也另用一些量測的技巧把電晶體的外部寄生元件找出來。加上這些寄生量之後,配合我們的大訊號功率量測,便可以進一步的來驗證我們模型參數的準確性。
為了取得模型中各個參數的值,我們藉由IC-CAP 中的BJT 模型模組,來進行量測和參數萃取分析的動作,進而得到四個不同射極面積大小的HBT 初始參數值。接著再將這四組參數值針對熱效應現象做其餘的參數萃取。皆下來我們把本質元件參數加上外部寄生元件,建立一完整的大訊號模型。同時也進行元件本身的大訊號功率量測。
最後由實際的量測結果與模擬結果作一比較,來印證本論文中所建立的模型於模擬磷化銦鎵/砷化鎵異質接面雙載子電晶體特性的準確性。除了模型之建立以外,本論文也詳述了從小訊號到大訊號的量測和校正步驟。藉由準確的校正和正確的量測方法,我們才能確保我們所量測到的曲線是合理而可相信的。
綜合上述結果,本論文所建立的模型,確實能正確模擬砷化鋁鎵/砷化鎵異質接面電晶體的特性。
This thesis is to extract the parameters of InGaP/GaAs HBTs and toestablish the large signal model. We also consider the thermal effect when
devices operate and the application of power operation in nonlinear region.
We adopt Gummel-Poon model in this thesis and add some extra parameters to help us with the simulation of thermal effect to get the correct results in simulation. Besides, we also use some measurement techniques tofind out the external parasitic components to establish a accurate large signal model. With these parasitic components, we can verify the accuracy of ourmodel after large signal power measurement.
To get the values of every parameters in our model, we measure and extract parameters in the BJT model in IC-CAP. After these methods, we get initial values of four HBTs with different emitter area. Following, we extract the remainder parameters according to the thermal effect
curves.After that, we add the external parasitic components to the intrinsic device to establish a complete large signal model. At the same time, we
proceed the large signal power measurement of these four devices.
Finally, we compare the measurement results with simulations’ to verify the accuracy in simulate the characteristic of the InGaP/GaAs HBTs. Besides simulation, this thesis also describe detailed setps of measurements and calibrations from small to large signal. According to accurate calibrations and correct measurements, we can ensure our measured curves are reasonable and believable.
To sum up these results, we can simulate the characteristic of InGaP/GaAs HBTs correctly by the model we establish.
[1] B. K. Oyama, and B. P. Wong “ GaAs HBT’s for Analog Circuits” IEEE,
December 1993.
[2] B. Bayraktaroglu “ GaAs HBT’s for Microwave Integrated Circuits” IEEE,
December 1993.
[3] S. Luryi, “How to Make an Ideal HBT and Sell It Too” IEEE, December
1994.
[4] I. Davies, R. A. Davies, S. .P March, N. A. Peniket, S. D. Wadsworth and
R. H. Wallis, “GaAs/InGaP HBT Devices and Circuits” IEEE, 1997.
[5] Q. Cai, J. Gerber, U. L. Rohde and T. Daniel, “HBT High-Frequency
Modeling and Integrated Parameter Extraction” IEEE, December 1997.
[6] P.J. Topham and A. Dearn, “Heterojunction Bipolar Transistors for
Millimeter Wave Applications” IEE, Mar 27 1991.
[7] C.N. Huang; I.M. Abdel-Motaleb;”Gummel-Poon model for single and
double heterojunction bipolar transistors” IEE, April 1991.
[8] J. J. Liou; J. S. Yuan.;”Physics-based large-signal heterojunction bipolar
transistor model for circuit simulation” Circuits, Devices and Systems,
IEE, Feb. 1991.
[9] H.C.de Graaff, “State-of-the-Art in Compact Modeling with Emphasis on
Bipolar RF Circuit Design” Delft Institute of Integrated Circuits and
Materials.
[10] G. Massobrio and P. Antogentti, “Semiconductor Device Modeling With
SPICE” McGraw-Hill, Inc. Second Edition.
[11] P. C. Ho,“Parameter Extraction and model Establishment of
AlGaAs/GaAs HBT” Master’s degree thesis, Department of Electrical
Engineering National Cheng Kung University Tainan, Taiwan, R.O.C.
[12] W. Liu, “Fundamentals of Ⅲ-Ⅴ Devices” John Wilely & Sons Inc. 1999.
[13] J. A. Fellows, V. M. Bright and T. J. Jenkins, “A PHYSICS-BASED
HETEROJUNCTION BIPOLAR TRANSISTOR MODEL FOR
INTEGRATED CIRCUIT SIMULATION” U.S. Government work not
protected by U.S. copyright.
[14] Agilent Technologies, “IC-CAP Characterization & Modeling
Handbook”.
[15] G. Massobrio and P. Antogentti, “Semiconductor Device Modeling With
SPICE” McGraw-Hill, Inc. Second Edition.
[16] F.Sischka, Agilent Technologies GmbH, Munich, “GUMMEL-POON
BIPOLAR MODEL MODEL DESCRIPTION PARAMETER
EXTRACTION” Gummel-Poon Toolkit B0_HEADR.WPS.
[17] A. Garlapati and S. Prasad, “Large Signal Characterization of
Heterojunction Bipolar Transistors” IEEE, October 1999.
[18] W. Lilensky and H. Beneking, “New Technique for Determination of
Static Emitter and Collector Series Resistance of Bipolar Transistors.”
Electronic Letters, July 1981.
[19] J. S. T. Huang, “Rapid determination of emitter-and collector-bulk
resistances.” IEEE, Apr 1976.
[20] D. MacSweeney, and Kevin McCarthy. “Inclusion of Substrate Effects in
the Flyback Method for BJT Resistance Characterization” IEEE, March
1999.
[21] Agilent Technologies, “High-Frequency Model Tutorial” vol.1. IC-CAP
manual.
[22] Agilent Technologies 8510C Network Analyzer System-Operating and
Programming Manual, Edition 3.0 Supersedes, January 31, 1994.
[23] Agilent Technologies, “IC-CAP Device Modeling Software Release
2002”.
[24] CASCADE, On-Wafer Vector Network Analyzer Calibration and
Measurements.
[25] “RF Semiconductors for Cellular and PCS Handsets,” Strategies
Unlimited.
[26] Agilent Technologies, “Upgrade Guide for the 8510 Vector Network
Analyzer”.
[27] CASCADE MICROTECH, “Calibrations and Accuracy Factors-User’s
Guide”.
[28] CASCADE MICROTECH, “Air Coplanar™ Probe Series“.
[29] Agilent Technologies, “Specifying Calibration Standards for the Agilent
8510 Network Analyzer”.
[30] Mikhail S. Shirokov, Sergey V. Cherepko, Xiaohang Du, James C. M.
Hwang and Douglas A. Teeter, “Large-Signal Modeling and
Characterization of High-Current Effects in InGaP/GaAs HBTs” IEEE,
April 2002.
[31] http://www.awsc.com.tw/c_index.htm
101
[32] H. Wang, C. Aligani, A.Konczykowska, W.Zuberek, “TEMPERATURE
DEPENDENCE OF DC CURRENT IN HBT” IEEE, 1992.
[33] K. Lu and X. Zhang “Characterization and Modeling of Thermal Dynamic
behavior of AlGaAs/GaAs HBTs” IEEE.
[34] D. Williams and P. Tasker, ”Thermal Parameter Extraction Technique
Using DC I-V Data For HBT Transistors” IEEE, 2000.
[35] V. Palankovski, R. Schultheis, and S. Selberherr,” Simulation of Power
Heterojunction Bipolar Transistors on Gallium Arsenide” IEEE, June
2001.
[36] Agilent Technologies, “Agilent 89190A IC-CAP 2002 Reference-
Parameter Extraction Language”.
[37] S. P. Marsh, “Direct Extraction Technique to Derive the Junction
Temperature of HBT’s Under High Self-Heating Bias Conditions” IEEE,
February 2000.
[38] N. Bovolon, “ A Simple Method for The Thermal Resistance Measurement
of AlGaAs / GaAs Heterojunction Bipolar Transistors” IEEE, August
1998.
[39] D. E. Dawson, “CW Measurement of HBT Thermal Resistance” IEEE,
October 1992.
[40] G. B. Gao; M. Z. Wang; X. Gui, H. Morkoc; “Thermal design studies of
high-power heterojunction bipolar transistors” IEEE, May 1989.
124
[41] A. Raghavan, B.Banerjee, S. Venkataraman and J. Laskar, “Direct
Extraction of InGaP/GaAs HBT Large Signal Model,” IEEE, 2002.
[42] B. Li, S. Prasad, L. W. Yang and S. C. Wang, “A Semianalytical
Parameter-Extraction Procedure for HBT Equivalent Circuit” IEEE,
October 1998.
[43] T. S. Horng, J. M. Wu and H. H. Huang, “An Extrinsic-Inductance
Independent Approach for Direct Extraction of HBT Intrinsic Circuit
Parameters” IEEE, December 2001.
[44] R. Gabl and M. Reisch, “Emitter Series Resistance from Open-Collector
Measurements— Influence of the Collector Region and the Parasitic pnp
Transistor” IEEE, December 1998.
[45] M. J. Kelly, J. A. C. Stewart and A. D. Patterson, “ A LARGE SIGNAL
MODEL FOR A GaInP/GaAs HBT” IEEE, 1995.
[46] A. Garlapati and S. Prasad, “Large Signal Characterization of
Heterojunction Bipolar Transistors” IEEE, October 1999.
[47] D. W. Wu, M. Fukuda and Y. H. Yun, “A NOVEL EXTRACTION
METHOD FOR ACCURATE DETERMINATION OF HBT
LARGE-SIGNAL MODEL PARAMETERS,” IEEE, 1995.
[48] M. Y. Frankel and D. Pavlidis, “Large-signal Modeling and Study of
Power Saturation Mechanisms in Heterojunction Bipolar Transistors,”
IEEE, 1991.
125
[49] D. Sawdai, K. Yang, S. S. Hsu, and G. I. Haddad, “Power Performance of
InP-Based Single and Double Heterojunction Bipolar Transistors”, IEEE,
August 1999.
[50] L. J. Ciacolette, “Measurement of emitter and collector series
resistances,” IEEE, May 1972.