簡易檢索 / 詳目顯示

研究生: 陳炳宏
Chen, Bing-Hung
論文名稱: 磷化銦鎵/砷化鎵異質接面雙載子電晶體之 參數萃取與大訊號模型建立
Parameter Extraction and Large Signal Model Establishment of InGaP/GaAs HBTs
指導教授: 蘇炎坤
Su, Yan-Kuin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 128
中文關鍵詞: 模型大訊號磷化銦鎵參數萃取異質接面雙載子電晶體
外文關鍵詞: HBT, Model, Large Signal, Extraction, Parameter, InGaP
相關次數: 點閱:103下載:50
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文旨在針對磷化銦鎵/砷化鎵異質接面雙載子電晶體參數的萃取及其小訊號到大訊號之模型的建立。這當中我們也考慮了元件操作時的熱效應現象和在功率操作的非線性區應用。
      本次實驗的模型以Gummel-Poon Model 為主,我們再另外加入一些參數來幫助我們模擬熱效應現象,以達到正確模擬異質接面電晶體的要求。同時,為了得到一個準確的大訊號模型,我們也另用一些量測的技巧把電晶體的外部寄生元件找出來。加上這些寄生量之後,配合我們的大訊號功率量測,便可以進一步的來驗證我們模型參數的準確性。
      為了取得模型中各個參數的值,我們藉由IC-CAP 中的BJT 模型模組,來進行量測和參數萃取分析的動作,進而得到四個不同射極面積大小的HBT 初始參數值。接著再將這四組參數值針對熱效應現象做其餘的參數萃取。皆下來我們把本質元件參數加上外部寄生元件,建立一完整的大訊號模型。同時也進行元件本身的大訊號功率量測。
      最後由實際的量測結果與模擬結果作一比較,來印證本論文中所建立的模型於模擬磷化銦鎵/砷化鎵異質接面雙載子電晶體特性的準確性。除了模型之建立以外,本論文也詳述了從小訊號到大訊號的量測和校正步驟。藉由準確的校正和正確的量測方法,我們才能確保我們所量測到的曲線是合理而可相信的。
      綜合上述結果,本論文所建立的模型,確實能正確模擬砷化鋁鎵/砷化鎵異質接面電晶體的特性。

      This thesis is to extract the parameters of InGaP/GaAs HBTs and toestablish the large signal model. We also consider the thermal effect when
    devices operate and the application of power operation in nonlinear region.
      We adopt Gummel-Poon model in this thesis and add some extra parameters to help us with the simulation of thermal effect to get the correct results in simulation. Besides, we also use some measurement techniques tofind out the external parasitic components to establish a accurate large signal model. With these parasitic components, we can verify the accuracy of ourmodel after large signal power measurement.
      To get the values of every parameters in our model, we measure and extract parameters in the BJT model in IC-CAP. After these methods, we get initial values of four HBTs with different emitter area. Following, we extract the remainder parameters according to the thermal effect
    curves.After that, we add the external parasitic components to the intrinsic device to establish a complete large signal model. At the same time, we
    proceed the large signal power measurement of these four devices.
      Finally, we compare the measurement results with simulations’ to verify the accuracy in simulate the characteristic of the InGaP/GaAs HBTs. Besides simulation, this thesis also describe detailed setps of measurements and calibrations from small to large signal. According to accurate calibrations and correct measurements, we can ensure our measured curves are reasonable and believable.
      To sum up these results, we can simulate the characteristic of InGaP/GaAs HBTs correctly by the model we establish.

    Abstract(in Chinese) Ⅰ Abstract(in English) Ⅲ ACKNOWLWDGEMENTS Ⅴ Contects Ⅵ Table Captions Ⅷ Figure Captions Ⅸ Chapter 1 Introductin 1.1 An Introduction to Heterojunction Bipolar Transistors 1 1.2 The Importance of Building a HBT Model 1 1.3 About This Paper 2 Chapter 2 Gummel Poon Model 2.1 Why Gummel Poon Model 6 2.2 Gummel Poon Static model 6 2.3 Gummel Poon large signal model 11 2.4 Gummel Poon small signal model 13 2.5 Limitations of the Gummel Poon model 14 Chapter 3 Parameter Extraction Principles 3.1 A Brief Introduction 21 3.2 Extract the Parasitic Emitter and Collector Resistors 22 3.3 Extract the Forward Gummel Poon Parameters 23 3.4 Extraction of Capacitance Parameters 26 3.5 Extraction of Base Resistance 27 3.6 Extraction of AC Parameters 29 3.7 Extraction of CC 30 3.8 Extraction of FC 30 3.9 Extraction of XCJC 31 Chapter 4 Measurement Technique and Simulation Steps 4.1 A Introduction to Measured and Simulated System 40 4.2 Calibration Setups 40 4.3 Calibrate the NWA and Calibration Technologies 42 4.4 Measurement Steps 50 4.5 Extract the Model Parameters from Measured Plots 50 4.6 Simulated Results 51 4.7 Results and Discussion 51 Chapter 5 Thermal Effect Behavior Simulation and Comparison 5.1 Thermal Behavior Theory 85 5.2 Thermal Resistance with PEL Program Simulation 86 5.3 Thermal Resistance with Real Measurement Results 88 5.4 Comparison with Real Measurements 91 5.5 Simulating the junction temperature with PEL program 93 Chapter 6 De-embedding Technology and Large Signal Model 6.1 External Parasitic effect and De-embedding Technology 103 6.2 Calculating the values of external parasitic components 106 6.3 Large Signal Measurement and Model Establishment 109 Chapter 7 Conclusion and Future Work 7.1 Conclusion 126 7.2 Future Work 127

    [1] B. K. Oyama, and B. P. Wong “ GaAs HBT’s for Analog Circuits” IEEE,
    December 1993.
    [2] B. Bayraktaroglu “ GaAs HBT’s for Microwave Integrated Circuits” IEEE,
    December 1993.
    [3] S. Luryi, “How to Make an Ideal HBT and Sell It Too” IEEE, December
    1994.
    [4] I. Davies, R. A. Davies, S. .P March, N. A. Peniket, S. D. Wadsworth and
    R. H. Wallis, “GaAs/InGaP HBT Devices and Circuits” IEEE, 1997.
    [5] Q. Cai, J. Gerber, U. L. Rohde and T. Daniel, “HBT High-Frequency
    Modeling and Integrated Parameter Extraction” IEEE, December 1997.
    [6] P.J. Topham and A. Dearn, “Heterojunction Bipolar Transistors for
    Millimeter Wave Applications” IEE, Mar 27 1991.
    [7] C.N. Huang; I.M. Abdel-Motaleb;”Gummel-Poon model for single and
    double heterojunction bipolar transistors” IEE, April 1991.
    [8] J. J. Liou; J. S. Yuan.;”Physics-based large-signal heterojunction bipolar
    transistor model for circuit simulation” Circuits, Devices and Systems,
    IEE, Feb. 1991.
    [9] H.C.de Graaff, “State-of-the-Art in Compact Modeling with Emphasis on
    Bipolar RF Circuit Design” Delft Institute of Integrated Circuits and
    Materials.
    [10] G. Massobrio and P. Antogentti, “Semiconductor Device Modeling With
    SPICE” McGraw-Hill, Inc. Second Edition.
    [11] P. C. Ho,“Parameter Extraction and model Establishment of
    AlGaAs/GaAs HBT” Master’s degree thesis, Department of Electrical
    Engineering National Cheng Kung University Tainan, Taiwan, R.O.C.
    [12] W. Liu, “Fundamentals of Ⅲ-Ⅴ Devices” John Wilely & Sons Inc. 1999.
    [13] J. A. Fellows, V. M. Bright and T. J. Jenkins, “A PHYSICS-BASED
    HETEROJUNCTION BIPOLAR TRANSISTOR MODEL FOR
    INTEGRATED CIRCUIT SIMULATION” U.S. Government work not
    protected by U.S. copyright.
    [14] Agilent Technologies, “IC-CAP Characterization & Modeling
    Handbook”.
    [15] G. Massobrio and P. Antogentti, “Semiconductor Device Modeling With
    SPICE” McGraw-Hill, Inc. Second Edition.
    [16] F.Sischka, Agilent Technologies GmbH, Munich, “GUMMEL-POON
    BIPOLAR MODEL MODEL DESCRIPTION PARAMETER
    EXTRACTION” Gummel-Poon Toolkit B0_HEADR.WPS.
    [17] A. Garlapati and S. Prasad, “Large Signal Characterization of
    Heterojunction Bipolar Transistors” IEEE, October 1999.
    [18] W. Lilensky and H. Beneking, “New Technique for Determination of
    Static Emitter and Collector Series Resistance of Bipolar Transistors.”
    Electronic Letters, July 1981.
    [19] J. S. T. Huang, “Rapid determination of emitter-and collector-bulk
    resistances.” IEEE, Apr 1976.
    [20] D. MacSweeney, and Kevin McCarthy. “Inclusion of Substrate Effects in
    the Flyback Method for BJT Resistance Characterization” IEEE, March
    1999.
    [21] Agilent Technologies, “High-Frequency Model Tutorial” vol.1. IC-CAP
    manual.
    [22] Agilent Technologies 8510C Network Analyzer System-Operating and
    Programming Manual, Edition 3.0 Supersedes, January 31, 1994.
    [23] Agilent Technologies, “IC-CAP Device Modeling Software Release
    2002”.
    [24] CASCADE, On-Wafer Vector Network Analyzer Calibration and
    Measurements.
    [25] “RF Semiconductors for Cellular and PCS Handsets,” Strategies
    Unlimited.
    [26] Agilent Technologies, “Upgrade Guide for the 8510 Vector Network
    Analyzer”.
    [27] CASCADE MICROTECH, “Calibrations and Accuracy Factors-User’s
    Guide”.
    [28] CASCADE MICROTECH, “Air Coplanar™ Probe Series“.
    [29] Agilent Technologies, “Specifying Calibration Standards for the Agilent
    8510 Network Analyzer”.
    [30] Mikhail S. Shirokov, Sergey V. Cherepko, Xiaohang Du, James C. M.
    Hwang and Douglas A. Teeter, “Large-Signal Modeling and
    Characterization of High-Current Effects in InGaP/GaAs HBTs” IEEE,
    April 2002.
    [31] http://www.awsc.com.tw/c_index.htm
    101
    [32] H. Wang, C. Aligani, A.Konczykowska, W.Zuberek, “TEMPERATURE
    DEPENDENCE OF DC CURRENT IN HBT” IEEE, 1992.
    [33] K. Lu and X. Zhang “Characterization and Modeling of Thermal Dynamic
    behavior of AlGaAs/GaAs HBTs” IEEE.
    [34] D. Williams and P. Tasker, ”Thermal Parameter Extraction Technique
    Using DC I-V Data For HBT Transistors” IEEE, 2000.
    [35] V. Palankovski, R. Schultheis, and S. Selberherr,” Simulation of Power
    Heterojunction Bipolar Transistors on Gallium Arsenide” IEEE, June
    2001.
    [36] Agilent Technologies, “Agilent 89190A IC-CAP 2002 Reference-
    Parameter Extraction Language”.
    [37] S. P. Marsh, “Direct Extraction Technique to Derive the Junction
    Temperature of HBT’s Under High Self-Heating Bias Conditions” IEEE,
    February 2000.
    [38] N. Bovolon, “ A Simple Method for The Thermal Resistance Measurement
    of AlGaAs / GaAs Heterojunction Bipolar Transistors” IEEE, August
    1998.
    [39] D. E. Dawson, “CW Measurement of HBT Thermal Resistance” IEEE,
    October 1992.
    [40] G. B. Gao; M. Z. Wang; X. Gui, H. Morkoc; “Thermal design studies of
    high-power heterojunction bipolar transistors” IEEE, May 1989.
    124
    [41] A. Raghavan, B.Banerjee, S. Venkataraman and J. Laskar, “Direct
    Extraction of InGaP/GaAs HBT Large Signal Model,” IEEE, 2002.
    [42] B. Li, S. Prasad, L. W. Yang and S. C. Wang, “A Semianalytical
    Parameter-Extraction Procedure for HBT Equivalent Circuit” IEEE,
    October 1998.
    [43] T. S. Horng, J. M. Wu and H. H. Huang, “An Extrinsic-Inductance
    Independent Approach for Direct Extraction of HBT Intrinsic Circuit
    Parameters” IEEE, December 2001.
    [44] R. Gabl and M. Reisch, “Emitter Series Resistance from Open-Collector
    Measurements— Influence of the Collector Region and the Parasitic pnp
    Transistor” IEEE, December 1998.
    [45] M. J. Kelly, J. A. C. Stewart and A. D. Patterson, “ A LARGE SIGNAL
    MODEL FOR A GaInP/GaAs HBT” IEEE, 1995.
    [46] A. Garlapati and S. Prasad, “Large Signal Characterization of
    Heterojunction Bipolar Transistors” IEEE, October 1999.
    [47] D. W. Wu, M. Fukuda and Y. H. Yun, “A NOVEL EXTRACTION
    METHOD FOR ACCURATE DETERMINATION OF HBT
    LARGE-SIGNAL MODEL PARAMETERS,” IEEE, 1995.
    [48] M. Y. Frankel and D. Pavlidis, “Large-signal Modeling and Study of
    Power Saturation Mechanisms in Heterojunction Bipolar Transistors,”
    IEEE, 1991.
    125
    [49] D. Sawdai, K. Yang, S. S. Hsu, and G. I. Haddad, “Power Performance of
    InP-Based Single and Double Heterojunction Bipolar Transistors”, IEEE,
    August 1999.
    [50] L. J. Ciacolette, “Measurement of emitter and collector series
    resistances,” IEEE, May 1972.

    下載圖示 校內:立即公開
    校外:2004-06-21公開
    QR CODE