| 研究生: |
陳柏睿 Chen, Bo-Rui |
|---|---|
| 論文名稱: |
建築性能分析軟體應用於建築設計教育之成效評估 Assessment of Integrated BPA Tools in Architectural Design Education |
| 指導教授: |
蔡耀賢
Tsay, Yaw-Shyan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 建築性能分析軟體 、準實驗方法 、問卷調查 、半結構式訪談 |
| 外文關鍵詞: | Building performance analysis (BPA) tools, quasi-experiment, questionnaire, semi-structured interview |
| 相關次數: | 點閱:106 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,建築設計端與業主對於永續環境議題的重視提升,對於實際建築之舒適性與友善環境之設計需求亦顯得增加,除了仰賴以往綠建築標章之規範外,尋求於設計階段中採納建築性能分析軟體(BPA Tools),並依據模擬數值結果輔助設計決策亦為一大潛在趨勢。然而,諸多文獻回顧顯示大多設計者仍採用「經驗法則」主導設計,且無論在設計實務端與學院的教育,對於設計流程中導入BPA Tools之可信度、時間點、操作流程及相關背景知識仍處於未成熟狀態。
因此,本研究著重於建築性能分析軟體於設計工作流程之應用,透過國內實務端建築設計工作流程與相應對之分析因子進行討論,試圖消弭於建築設計階段應用模擬技術之障礙與增加採納意願。
首先係以建築系大學部設計課程小組為對象,樣本數為7人,進行一學期的教育訓練課程,透過質性問卷與訪談進行綜合性分析,評估訓練成效與適用性。結果發現大部分的教育訓練具有良好成效(p-value <0.05),受試者對建築性能分析軟體之知識有顯著之提升。然而,在個體間學習成效之差異,可能造成受試者對技術易用性的認知差異,但在技術價值認知與採納意願並無顯著影響。另一方面,在建築性能分析軟體的調查中,受試者在教育訓練後對DIVA、FlowDesigner及Honeybee分析軟體的「技術易用性認知」結果並無顯著提升,在「技術價值認知」及「訓練課程認知」中,僅 Honeybee分析軟體並無顯著提升,而在「採納意願」中,發現基礎環境分析、建築熱輻射分析、建築光環境分析、建築風環境分析皆有顯著採納意願,反之,建築日照陰影分析與建築能耗分析則否。Honeybee建築能耗分析軟體在訓練後成效不彰,而可能因素為課程時間安排仍有不足、學生的學習狀態以及軟體本身較為複雜,操作者所需之背景知識更為艱深,導致不容易立即獲得良好學習成效,分析結果在設計的應用也受到限制。
因此,本研究於文末總結未來建築學院在理論與分析軟體操作課程之建議,將能源相關議題安排獨立課程,以增加足夠案例分析介紹與專業知識聚焦;另一方面,本研究建議學習者具備基礎建築模型軟體能力,如: Rhinoceros、Grasshopper或Revit,對於建築性能分析軟體操作具有良好的學習幫助。
Since the sustainable issue has become a trend in recent years, except for the reliance of Green Building Label in Taiwan, the adoption of building performance analysis (BPA) tools is also an efficient way in the design process for decision-making. However, according to the literature review that reveals the fact"rule of thumb"was still the measure when architects discuss the green building design. Also, the lack of background knowledge could always be noticed“gap” between the intention of sustainability and design works in either academic education or design practice.
Therefore, this research was started on the characteristics of BPA software, the training course of basic knowledge, and application through the early design phase. To close the gap, a guided workflow of BPA tools was proposed for the designer’s needs. Including basic environment analysis, daylighting, CFD and energy simulation. The guided workflow was first used to draft a pilot experiment course in architectural design education with 7 subjects, in order to enhance students’fundamental knowledge and cognitive factors.
The experiment results indicate subjects have a significant improvement on the knowledge of Ladybug, DIVA and Flowdesigner tools ( p-value <0.05), nevertheless, Honeybee tool showed on the opposite. On the other hand, the results of other cognitive factors, “Perceived Ease of Use” only showed significant on Ladybug and DIVA tool, “Perceived Usefulness” only showed insignificant on Honeybee tool and “Intention to Use” showed insignificant on Honeybee tool and part of Ladybug software.
This study shows a positive effect on trainee’s fundamental knowledge of BPA tools and process capability during the design studio. According to the conclusion, grading course with learning objectives, training methods and contents has been modified and suggested.
(一) 中文文獻
1. 內政部建築研究所(2015),綠建築評估手冊–基本型
2. 林權萱(2018),以建築師事務所觀點探究建築性能模擬軟體在設計實務中之採用因素
3. 國家教育研究院,學術名詞暨辭書資訊網,http://terms.naer.edu.tw/
4. 方世榮(2007),統計學導論,華泰文化事業股份
(二) 英文文獻
1. AIA . (1995). Document D200:Project Checklist.
2. AIA. (2012). AIA-Energy-Guide.
3. Alainati S., Sarmad N.A., Wafi A.K. (2009). European and Mediterranean Conference on Information Systems 2010, April 12-13 2009, Abu Dhabi, UAE.
4. Aliyah N.Z. Sanusi., Zuraini D. (2012). Ecotect: As Part of the Learning Experience for Young Architecture Students to Raise Awareness in Environmental Responsive Building Design.
5. Alsaadani S., De Souza C.B. (2018). Performer, consumer or expert? A critical review of building performance simulation training paradigms for building design decision-making. Journal of Building Performance Simulation.
6. Attia S. (2012). Computational optimisation for Zero Energy Building Design Interview with Twenty Eight International Expats. International Energy Agency (IEA) Task 40: Net zero Energy Buildings Subtask B.
7. Attia S., De Herde A. (2010). Early Design Simulation Tools for Net Zero Energy Buildings: A Comparison of Ten Tools. IBPSA, Vol. 1, no. 1.
8. Attia S., Gratia E., De Herde A., Hensen J.L.M. (2013). Achieving informed decision-making for net zero energy buildings design using building performance simulation tools, Building Simulation, Vol 6-1, P 3-21.
9. Attia S., Jan L.M. Hensenb., Liliana B., De Herde A. (2012). Selection criteria for building performance simulation tools: contrasting architects’ and engineers’ needs. Journal of Building Performance Simulation. Vol. 5, No. 3, May 2012, 155–169.
10. Allcock, Sarah J., Hulme, Julie A. (2010). Learning styles in the classroom: Educational benefit or planning exercise? Psychology Teaching Review, v16 n2 p67-79.
11. Bambardekar S., Poerschke U. (2009). The Architect as performer of Energy Simulation in the Performance Based Design. Building Simulation: Eleventh International IBPSA Conference.
12. Beidi L. (2017). Use of Building Energy Simulation Toolsin Early-Stage of Design Process. Degree Project No. 459. KTH Royal Institute of Technology Division of Building Technology Department of Civil Engineering and Architecture SE-100 44 Stockholm, Sweden.
13. Bernier M., Michaël K., Simon S., Denis B., Didier T. (2016). Teaching a Building Simulation Course at the Graduate Level.
14. Bröde P., Błażejczyk K., Fiala D., Havenith G., Holmér I., Jendritzky G., Kuklane K., Kampmann B. (2012). The Universal Thermal Climate Index UTCI Compared to Ergonomics Standards for Assessing the Thermal Environment. Industrial Health 2013, 51, 16–24.
15. Clarke J.A., Hensen J.L.M. (2015). Integrated building performance simulation: Progress, prospects and requirements. Building and Environment 91(2015) 294-306.
16. de Wilde P. (2018). Building Performance Analysis. John Wiley & Sons Ltd.
17. Delbin S., Vanessa G.D. Silva., Doris C.C. K.Kowaltowski., Lucila C. Labaki. (2006). Implementing building energy simulation into the design process: A teaching experience in Brazil. PLEA2006 - The 23rd Conference on Passive and Low Energy Architecture, Geneva, Switzerland, 6-8 September.
18. Davis, Gregory A. (2002). Using a Retrospective Pre-Post Questionnaire To Determine Program Impact. Meeting Papers. Annual Meeting of the Mid-Western Educational Research Association.
19. Danley W.E. & Baker C. (2008). Comparing a Pre-Service Mainstreaming Class Taught by Traditional Methods with a Similar Class Taught by Computer-Assisted Instruction. Computers in the Schools, Interdisciplinary Journal of Practice, Theory, and Applied Research, Vol 5, 1998 Issue 1-2.
20. Fumo N. (2014). A review on the basics of building energy estimation. Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 53-60.
21. Göçer Ö., Sokol D. (2015). The Use of Building Performance Simulation Tools in Undergraduate Program Course Training. Proceedings of BS2015: 14th Conference of International Building Performance Simulation Association, Hyderabad, India, Dec. 7-9.
22. Guzowski M. (2013). Time and Adaptive Comfort Studies: Luminous and Thermal Design for Zero-Energy Architectural Education. International Conference on Adaptation and Movement in Architecture, Toronto, Canada, 10‐12 October.
23. Halliday S. (2008). Sustainable Construction.
24. Hopfe C.J., Veronica S., Dru C., Rajan R. (2017). Understanding the differences of integrating building performance simulation in the architectural education system. Building Simulation 2017: The 15th International Conference of IBPSA, San Francisco, August 7-9th.
25. IEA-SHC. (2012). Task 41: Solar Energy and Architecture.
26. Illuminating Engineering Society of North America, IES LM-83-12. IES Spatial Daylight Autonomy (sDA) and Annual Sunlight Exposure (ASE). New York:IESNA, 2012.
27. John E.M., Scott I.T., Eduardo S. (1992). Influences of Individual and Situational Characteristics on Measures of Training Effectiveness. The Academy of Management Journal, Vol. 35, No. 4 (Oct., 1992), pp. 828-847.
28. Kanters J., Horvat M., Dubois M.C. (2014). Tools and methods used by architects for solar design. Energy and Buildings 68 (2014) 721-731.
29. Karen M. K., Douglas N.F. (2015). Building Information Modeling: BIM in Current and Future Practice.
30. Littlefair P.J. (2018). Solar shading of buildings (Second edition).
31. Littlefair P.J., Santamouris M., Alvarez S., Dupagne A., Hall D., Teller J., Coronel J.F., Papanikolaou N. (2000). Environmental site layout planning: solar access, microclimate and passive cooling in urban areas.
32. Mardalijevic J. and Nabil A. (2005). The Useful Daylight Illuminance Paradigm: A Replacement for Daylight Factors. Lighting Research & Technology, 37(1), 41-59.
33. Maria A.Z., Robby S., Kirti R. (2017). Towards a BIM- enabled sustainable building design process: roles, responsibilities, and requirements, Architectural Engineering and Design Management, 13:2, 101-129.
34. Morbitzer C., Strachan P., Webster J., Spires B., Cafferty D. (2001). Integration of Building Simulation into The Design Process of an Architecture Practice.
35. MORRISON I.B., HOPFE C.J. (2015). Teaching Building Performance Simulation through a continuous learning cycle. 14th International Conference of the International Building Performance Simulation Association, Hyderabad, India, Dec. 7-9th.
36. Mostapha S.R., Michelle P. (2013). LADYBUG: A Parametric Environmental Plugin for Grasshopper to Help Designers Create an Environmentally-conscious Design. Proceedings of BS2013: 13th Conference of International Building Performance Simulation Association, Chambéry, France, Aug. 26-28.
37. Maloof J. & White V. K.B. (2010). Team study training in the college biology laboratory. Journal of Biological Education. Vol 39, 2005 - Issue 3.s
38. Negendahl K. (2015). Building performance simulation in the early design stage: An introduction to integrated dynamic models. Automation in Construction 54 (2015) 39–53.
39. Naghshineh S., Hafler J.P., Miller A.R., Blanco M.A., Lipsitz S.R., Dubroff R.P., Khoshbin S., Katz J.T. (2008). Formal Art Obervation Training Improves Medical Students’ Visual Diagnostic Skills. Journal of General Internal Medicine, July 2008, Volume 23, Issue 7.
40. Ofer Z., Avraham S., Chih Y.Y. (2015). Simulation-Based Training for Project Management Education: Mind the Gap, As One Size Does Not Fit All. Journal of Management in Engineering, March 2015.
41. Østergård T., Jensen R.L., Maagaard S. (2016). Building simulations supporting decision making in early design – A review. Renewable & Sustainable Energy Reviews, 61(August), 187-201.
42. Patrick P.C., Charles R.T. (2009). Four approaches to teaching with building performance simulation tools in undergraduate architecture and engineering education, Journal of Building Performance Simulation, 2:2, 95-114.
43. Ramsden J., Keeling T., Shepherd P., Shea A., Sharma S. (2015). 'SmartBuildingAnalyser: A parametric earlystage analysis tool for multi-objective building design'. CIBSE Technical Symposium, London, UK United Kingdom, 16/04/15-17/04/15.
44. Robert T.M., John S.K. (2007). The New Taxonomy of Educational Objectives. Second Edition.
45. Salas E., Wildman J.L., Piccolo R.F. (2009). Using Simulation-Based Training to Enhance Management Education. Academy of Management Learning & Education, 2009, Vol. 8, No. 4, 559 –573.
46. Schlueter A., Thesseling F. (2009). Building information model based energy/ exergy performance assessment in early design stages. Automation in Construction Volume 18, Issue 2, March 2009, Pages 153-163.
47. Shan H., Ulrike P. (2015). Architectural Student’s Attitude Towards Building Energy Modeling: A Pilot Study to Improve Integrated Design Education. Proceedings of BS2015: 14th Conference of International Building Performance Simulation Association, Hyderabad, India, Dec. 7-9.
48. Soebarto V., Hopfe C.J., Dru C., Rajan R. (2015). Capturing the views of architects about building performance simulation to be used during design processes. Conference Proceedings Building Simulation 2015, 2015 / Mathur, J., Garg, V. (ed./s), pp.1480-1487.
49. Struck C., de Wilde P.J.C.J., Hopfe C.J., Hensen J.L.M. (2009). An investigation of the option space in conceptual building design for advanced building simulation. Advanced Engineering Informatics 23 (2009) 386–395.
50. Tracey J.B., Hinkin T.R., Tannenbaum S., Mathieu J.E. (2001). The Influence of Individual Characteristics and the Work Environment on Varying Levels of Training Outcomes. Cornell University.
51. Wilcoxon F. (1945). Individual Comparisons by Ranking Methods, Biometrics Bulletin, Vol. 1, No. 6. (Dec., 1945), pp. 80-83.
52. Xia C., Zhu Y., Lin B. (2008). Building Simulation as Assistance in the Conceptual Design. Build Simul (2008) 1: 46–52.