簡易檢索 / 詳目顯示

研究生: 謝政融
Hsieh, Cheng-Jung
論文名稱: 具最大功率追蹤之並聯型風電用電能轉換器
Paralleled Wind Energy Power Converters with Maximum Power Point Tracking
指導教授: 張簡樂仁
Chang-Chien, Le-Ren
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 115
中文關鍵詞: 循環電流並聯型風電轉換器最大功率追蹤
外文關鍵詞: circulating current, parallel wind energy converter, maximum power point tracking (MPPT)
相關次數: 點閱:89下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來風力發電採用永磁發電機越趨普及,永磁式同步發電機需全額定轉換器。由於轉換器的額定功率越來越大,風力發電機大部份時間卻操作在低風速下,並聯多組整流器取代單一整流器可以選用較低電流應力的開關元件並提升低風速時的轉換效率。然而其缺點是整流器並聯時會產生循環電流(環流)導致電流失真。針對抑制循環電流部份本文推導出發電機、零相序阻抗及並聯三相脈寬調變整流器之數學模型,並設計出適當的電流控制器以抑制循環電流。另外,本論文亦採用新型適應性追蹤演算法與電流分配策略,相較於傳統擾動觀察法,其動作分析較為簡單且可由電氣回授信號判斷風速變動。最後應用在風電轉換器中,並以風渦輪機模擬器驗證環流抑制及最大功率追蹤演算法之效果。

    In recent years, permanent magnetic synchronous generator (PMSG) has been widely used in the wind power generation. A PMSG needs full-rated power converter to convert wind energy into electrical energy. Due to the increasing trend of power rating on the power converter; the power converter, however, usually operates at low wind speed. Paralleling PWM rectifiers to replace a full-rated power converter can reduce current stress of the converter and improve converter’s efficiency at low wind speed. However, paralleling PWM rectifiers may cause circulating current and distort the current waveform. In order to suppress circulating current, this thesis derives three phase rectifier model which includes generator, zero sequence impedance, and design a current controller accordingly. In addition, this research adopts a novel adaptive maximum power point tracking algorithm with current distribution strategy for the paralleling PWM rectifier. In contrast to traditional perturb and observe method, novel adaptive MPPT algorithm can be easily analyzed and determine wind change by feedback signal. The effectiveness of the circulating current suppression and maximum power tracking efficiency are verified by a wind turbine emulator.

    摘要 I Extended Abstract II 誌謝 XVIII 目錄 XIX 表目錄 XXIII 圖目錄 XXIV 第一章 緒論 1 1.1 研究背景與動機 1 1.2 內容與貢獻 3 1.3 本文大綱 5 第二章 並聯型風電轉換器 7 2.1 前言 7 2.2 qd0坐標軸轉換 9 2.3 三相脈寬調變轉換器 12 2.3.1 開關切換狀態 12 2.3.2 空間向量脈寬調變 14 2.4 發電機與並聯三相脈寬調變整流器模型 20 2.4.1 永磁式同步發電機模型 20 2.4.2 並聯三相脈寬調變整流器模型 24 2.5 無機械式感測器之相位角偵測 31 第三章 零相序控制器於環流抑制之成效 33 3.1 環流定義與形成原因 33 3.1.1 環流定義 33 3.1.2 環流形成原因 34 3.2 環流抑制方式 36 3.3 環流之模擬與分析 40 3.4 本文採用之環流抑制方式 47 第四章 並聯型風電轉換器之最大功率追蹤演算法 49 4.1 風渦輪機特性[21] 49 4.2 適應性最大功率演算法 52 4.2.1 最大功率演算法簡介 52 4.2.2 新型適應性最大功率演算法 53 4.2.2.1 峰值偵測模式 57 4.2.2.2 適應性追蹤模式 60 4.2.2.3 定轉矩模式 61 4.3 並聯型風電轉換器電流命令分配策略 62 第五章 硬體電路製作與軟體規劃 65 5.1 前言 65 5.2 硬體電路 66 5.2.1 永磁式同步發電機 66 5.2.2 並聯三相脈寬調變整流器 67 5.2.3 電壓與電流信號偵測電路 67 5.2.4 數位訊號控制器與周邊電路 70 5.3 軟體控制規劃 72 第六章 實體電路測試與討論 78 6.1 前言 78 6.2 並聯整流器抑制環流效應測試 78 6.2.1 1.5kW發電機低轉速下實驗波形 78 6.2.2 1.5kW發電機高轉速下實驗波形 86 6.2.3 10kW發電機測試結果 90 6.2.4 實驗結果討論 97 6.3 雙台三相整流器搭配最大功率追蹤測試 98 6.3.1 定風速實測結果 99 6.3.2 變風速實測結果 105 第七章 結論與未來研究方向 110 7.1 結論 110 7.2 未來研究方向 111 參考文獻 112

    [1]2012年能源產業技術白皮書, 經濟部能源局, 2012.
    [2]World Wind Energy Report 2012, WWEA, 2012.
    [3]World Wind Energy Half-year Report 2013, WWEA, 2013.
    [4]發電資訊-我國再生能源發電現況, 臺灣電力公司 Available: http://www.taipower.com.tw/content/new_info/new_info-b31.aspx?LinkID=8
    [5]梁威志, “新型適應性最大功率追蹤演算法之三相風能轉換系統,”國立成功大學電機工程學系碩士論文, 2012年6月.
    [6]H. C. Lu and L. R. Chang-Chien, “Use of wind turbine emulator for the WECS development,” Power Electronics Conference (IPEC), 2010 International, pp. 3188-3195, June 2010.
    [7]K. Zhou and D. Wang, “Relationship between space-vector modulation and three-phase carrier-based PWM: a comprehensive analysis,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 186-196, Feb. 2002.
    [8]王國丞, “並聯型三相不斷電系統之研製,” 國立臺灣科技大學電機工程學系碩士論文, 2006年6月.
    [9]C. M. Ong, Dynamic Simulation of Electric Machinery: Using MATLAB/SIMULINK. Taiwan: Pearson Education, 2003.
    [10]B. K. Bose, Modern Power Electronics and AC Drives. USA: Prentice Hall, 2001.
    [11]B. Yin, R. Oruganti, S. K. Panda, and A. K. S. Bhat, “A simple single –input-single-output (SISO) model for a three-phase PWM rectifier,” IEEE Trans. Power Electron., vol. 24, pp. 620-631, Mar. 2009.
    [12]B. H. Bae, S. K.Sul, J. H. Kwon, and J. S. Byeon, “Implementation of sensorless vector control for super-high-speed PMSM of turbo-compressor,” IEEE Trans. Ind. Appl., vol. 39, no. 3,pp. 811-818, May/June 2003.
    [13]C. T. Pan and Y. H. Liao, “Modeling and control of circulating currents for parallel three-phase boost rectifiers with different load sharing,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2776-2785, Jul. 2008.
    [14]江智弘, “兩並聯整流器間循環電流之抑制研究”, 國立成功大學電機工程學系碩士論文, 2013年6月.
    [15]T. Kawabata and S. Higashino, “Parallel operation of voltage source inverters,” IEEE Trans. Ind. Appl., vol. 24, no. 2, pp. 281-287, Mar./Apr. 1988.
    [16]S. Ogasawar, H. Akagi, and A. Nabae, “A novel control scheme of a parallel current-controlled PWM inverter,” IEEE Trans. Ind. Appl., vol. 28, no. 5, pp. 1023-1030, Sept./Oct. 1992.
    [17]Y. Sato and T. Kataoka, “Simplified control strategy to improve ac-input-current waveform of parallel-connected current-type PWM rectifiers,” in Proc. Inst. Elect., vol.142, pp. 246-254, July 1995.
    [18]C. T. Pan and Y. H. Liao, “Modeling and coordinate control of circulating currents in parallel three-phase boost rectifiers,” IEEE Trans. Ind. Electron., vol. 54, no. 2, pp. 825-838, Apr. 2007.
    [19]R. Li and D. G. Xu, “Parallel operation of full power converters in permanent-magnet direct-drive wind power generation system,” IEEE Trans. Ind. Appl., vol. 60, no. 4, pp. 1619-1629, Apr. 2013.
    [20]Z. Xu, R. Li, and D. G. Xu, “Control of parallel multirectifiers for a direct-drive permanent-magnet wind power generator,” IEEE Trans. Ind. Appl., vol. 49, no. 4, pp. 1687-1696, July/Aug. 2013.
    [21]桂人傑, “變速風機之控制系統,” 機械工程,第261期,第20-36頁, 2007年6月.
    [22]K. Tan and S. Islam, “Optimum control strategies in energy conversion of PMSG wind turbine system without mechanical sensors,” IEEE Trans. Energy Convers., vol. 19, no. 2, pp.392-399, Jun. 2004.
    [23]F. Valenciaga and P. F. Puleston, “Supervisor control for a stand-alone hybrid generation system using wind and photovoltaic energy,” IEEE Trans. Energy Convers., vol. 20, no. 2, pp.398-405, Jun. 2005.
    [24]M. Chinchilla, S. Arnaltes, and J.C. Burgos, “Control of permanent-magnet generators applied to variable-speed wind energy systems connected to the grid,” IEEE Trans. Energy Convers., vol.21, no. 1, pp.130-135, Mar.2006.
    [25]E. Koutroulis and K. Kalaitzakis, “Design of a maximum power tracking system for wind-energy-conversion applications,” IEEE Ind. Electron., vol. 53, no. 2, pp. 486-494, Apr. 2006.
    [26]S. M. R. Kazmi, H. Goto, H.-J. Guo, and O. Ichinokura, “A novel algorithm for fast and efficient speed-sensorless maximum power point tracking in wind energy conversion systems,” IEEE Trans. Ind. Electron., vol.58, no. 2,pp. 29-36, Jan. 2011.
    [27]Y. Xia, K. H. Ahmed, and B. W. Williams, “A new maximum power point tracking technique for permanent magnet synchronous generator based energy conversion system,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3609-3620, Dec. 2011.
    [28]曾百由, dsPIC數位訊號控制器原理與應用-MPLAB C30開發實務.台北市: 宏友圖書開發股份有限公司, 2009.
    [29]“能源國家型計畫研究計畫-高效能中小型(10千瓦)風力發電機之系統開發與性能驗證,” 行政院國家科學委員會, 計畫編號:NSC 100-3113-E-006-005, 2010.

    下載圖示 校內:2019-08-14公開
    校外:2019-08-14公開
    QR CODE