簡易檢索 / 詳目顯示

研究生: 歐德健
Ou, De-Jian
論文名稱: 低階層HRTF和小波分頻遞迴式最小平方的串音消除之設計
Designs of Low-Order Modeling HRTF and Crosstalk Cancellation Using Wavelet Sub-band Recursive Least-Square Adaptive Algorithm
指導教授: 雷曉方
Lei, Sheau-fang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 91
中文關鍵詞: 串音消除頭部相關轉移函數適應性演算法
外文關鍵詞: HRTF, crosstalk cancellation, adaptive algorithm
相關次數: 點閱:92下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 頭部相關轉移函數(HRTF)是由實驗量測出來的通道函數,但是由於資料量過於龐大,使用起來有一定的困難度,所以我們將其刪減,並保留關鍵資訊方便使用。同時為了實現3D音效於雙音響的環境中,必須考量串音(crosstalk)現象,所以設計了串音消除系統來改善串音現象。在這系統中使用了不同的適應性演算法法來設計串音消除濾波器,並改良遞迴式最小平方適應性演算法(RLS)的小波分頻遞迴式最小平方適應性演算法來改善計算複雜度的問題。

    Head-Related Transfer Function is the channel function which is measured by the experiment. However, the size of the data is so large that we apply them to synthesize 3-D audio arduously. We will reduce the HRTF and retain the important date to manipulate conveniently. In order to realize 3-D audio in the environment of two loudspeakers, it is a must consideration that the condition of crosstalk. On account of crosstalk, we need to design crosstalk canceller to improve the condition. We use the different adaptive algorithm to design this filter, and propose wavelet sub-band recursive least-square adaptive algorithm to improve the computational complexity of recursive least-square algorithm.

    摘要 2 ABSTRACT 3 ACKNOWLEDGMENTS 4 OUTLINE 5 LIST OF TABLES 7 LIST OF FIGURES 8 Chapter 1 Introduction 11 Chapter 2 Head-Related Transfer Function 13 2.1 Measurement Technique 13 2.2 Measurement Procedure 16 2.3 Data 17 2.4 Binaural Synthesis with HRTF 18 Chapter 3 Minimum-Phase and All-Pass Systems for HRTF 21 3.1 Sensitivity of Human Subjects to Head-Related Transfer Function Phase Spectra 21 3.2 Minimum-Phase and All-Pass Systems 22 3.3 Minimum Phase Plus Delay Model for HRTF 25 Chapter 4 Crosstalk Cancellation 27 4.1 The Theory of Crosstalk Cancellation 27 4.2 Shuffler Filter Structure for Crosstalk Cancellation 31 Chapter 5 Methods for Minimum-Phase and Designs of FIR 34 5.1 Methods of Computation of Minimum-Phase HRTF Sequences 34 5.2 Optimum Least-Square Solution (LS) 36 5.3 Adaptive Filter Methods 38 5.3.1 Least-Mean-Square Adaptive Algorithm (LMS) 40 5.3.2 Recursive Least-Square Adaptive Algorithm (RLS) 43 5.3.3 Hopfield Neural Network Based Approach (HNN) 49 5.3.4 Proposed Method - Wavelet Sub-band Recursive Least-Square Adaptive Algorithm (WSRLS) 52 Chapter 6 Proposed Structure, Simulations & Results 56 6.1 Analyses for Head-Related Transfer Functions 56 6.1.1 The Difference of HRIR’s Group Delay 56 6.1.2 The Difference of HRIR’s Amplitude 61 6.2 Low-Order Modeling of HRTF Using Direct Form Truncated 66 6.3 Proposed Structure of HRTF’s Synthesizer 70 6.4 Interpolation of Head-Related Transfer Function 71 6.5 Performance Evaluation of Crosstalk Cancellation 74 6.5.1 The Functions of Performance Evaluation in Time-Domain 74 6.5.2 The Functions of Performance Evaluation in Frequency-Domain 75 6.5.3 Comparison of Shuffler Filter for Crosstalk Cancellation 76 Chapter 7 Conclusions 88 REFERENCES 89 Curriculum Vita 91

    [1] J. L. Bauck, D. H. Cooper, “Generalized Transaural Stereo and Applications,” J. Audio Eng. Soc., vol. 44, no. 9, pp. 683-685, Sept. 1996
    [2] D. R. Begault, “3-D Sound for Virtual Reality and Multimedia AP Professional,” 1994
    [3] B. Gardner, K. Martin, “HRTF measurements of a KEMAR dummy-head microphone,” Technical Report 280, MIT Media Lab Perceptual computing, May, 1994
    [4] B. Gardner, K. Martin, “HRTF measurements of a KEMAR,” Journal of the Acoustical Society in America, vol.97, 1995
    [5] W. G. Gardner, “3-D Audio Using Loudspeakers,” Kluwer Academic Publishers, 1998
    [6] S. Haykin, “Adaptive Filter Theory,” Fourth Edition, Prentice Hall Inc., 2002
    [7] Y. D. Jou, “Design of real FIR filters with arbitrary magnitude and phase specifications using a neural-based approach,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 10, pp. 1068–1072, Oct. 2006
    [8] Y. D. Jou, F. K. Chen, “On the Use of Lyapunov Functions for the Design of Complex FIR Digital Filters,” Circuits and Systems, 2006. APCCAS 2006. IEEE Asia Pacific Conference on 4-7, Page(s):740 – 743, Dec. 2006
    [9] A. Kulkarni, S. K. Isabelle, H. S. Colburn, “Sensitivity of human subjects to head-related transfer-function phase spectra,” The Journal of the Acoustical Society of America, Volume 105, Issue 5, pp.2821-2840, May 1999
    [10] S. T. Neely, J. B. Allen, “Invertibility of a room impulse response,“ The Journal of the Acoustical Society of America, Volume 66, Issue 1, pp.165-169, July 1979
    [11] A. Mouchtaris, P. Reveliotis, C. Kyriakakis, “Inverse filter design for immersive audio rendering over loudspeakers,” Multimedia, IEEE Transactions on Volume 2, Issue 2, Page(s):77 – 87, June 2000
    [12] A. V. Oppenheim, R. W. Schafer, J. R. Buck, “Discrete-Time Signal Processing,” Second Edition, Prentice Hall Inc., 1999
    [13] H. I. K. Rao, V. J. Mathews, Y. C. Park, “A Minimax Approach for the Joint Design of Acoustic Crosstalk Cancellation Filters,” IEEE Trans. Audio, Speech, and Language Processing, Volume 15, Issue 8, Page(s):2287 – 2298, , Nov. 2007
    [14] R. Susnik, J. Sodnik, A. Umek, S. Tomazic, “Spatial sound generation using HRTF created by the use of recursive filters,” EUROCON 2003. Computer as a Tool. The IEEE Region 8, Publication Date: 22-24 Sept. 2003 Volume: 1, page(s): 449- 453
    [15] D. B. Ward, “Joint Least Squares Optimization for Robust Acoustic Crosstalk Cancellation,” IEEE Trans. Speech and Audio Processing, Volume 8, Issue 2, page(s): 211-215, Mar 2000
    [16] E. M. Wenzel, “Localization in virtual acoustic displays,” Presence: Teleoperators and Virtual Environments, 1, 80-107, 1992

    下載圖示 校內:2013-09-03公開
    校外:2013-09-03公開
    QR CODE