簡易檢索 / 詳目顯示

研究生: 杜昆澤
Tu, Kun-Tse
論文名稱: 微機電技術於微奈米複合結構製作與應用
Fabrication and application of hybrid micro/nano structure by MEMS technology
指導教授: 鍾震桂
Chung, Chen-Kuei
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 115
中文關鍵詞: 二氧化碳雷射陽極氧化鋁微零件表面增強拉曼散射細胞增殖複合結構
外文關鍵詞: CO2 Laser, Adodic aluminum oxide (AAO), Micro-part, Surface-Enhanced Raman Scattering (SERS), Cell Proliferation, Hybrid structure
相關次數: 點閱:169下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微奈米結構的應用一直是許多研究的主題及方向。傳統上微米結構的製程以微機電系統為主。波長10.6 μm的二氧化碳雷射具有低成本、快速與彈性製造優勢。二氧化碳雷射系統亦廣泛被應用在微通道消融、切割,並可使用於微機電、生物晶片、光學元件、顯示面板與牙科雷射應用。雷射直接加工所產生的噴濺、凸塊、微裂痕與燒焦等材料缺陷將會影響到微結構後續相關應用面。而具高深寬比奈米孔特性的陽極氧化鋁(anodic aluminum oxide, AAO),可做為模板製備奈米線或其他一維奈米材料,並整合於電子或光電奈米製程中。本研究發展重點主要在於微奈米結構的製程改善與應用、微奈米複合結構的開發製作。
    在微米結構製程上分別以CO2及Nd:YVO4雷射作為加工的成形探討。金屬光罩輔助雷射加工技術。該方法的可行性分別製造微混合器(Y和T型微流道)。它表明,對於100 μm的設計流道寬度,該金屬光罩減少了從268到103 μm的燒蝕溝道寬度。此外,圍繞該通道的邊緣上的凸出高度是從8.3降低到<0.2 μm。以及利用兩次PDMS翻模成型,可生物降解的聚合物微針陣列已可製作。可以減少因雷射加工消融燒焦的熱缺陷造成二次凝固和收縮的缺陷.成功製作出可多次翻模製作PLGA微針的方法。並已在裸鼠皮膚滲透測試表明,微針陣列可以刺穿皮膚。利用短波常雷射(1064nm)在透明導電薄膜(ITO)上製作微米圖案,並成功電鑄出銅多邊形金屬微元件。
    高度有序的可UV固化樹脂奈米柱陣列用AAO模板製造,來製作銀奈米柱陣列。這個方法解決了在以往的奈米壓印技術的非平坦及破壞缺陷的問題,並允許奈米模板重複翻模。週期性雙層結構化奈米柱陣列(small nano-pillar(直徑約30nm)和high nano-pillar(直徑:約110 nm)由來自AAO模板的紫外線固化樹脂成型得到。而沉積銀粒子後可增強檢測至107M的亞甲基藍溶液。另一方面,在常溫下使用脈衝電位製程對低純度鋁進行陽極氧化的結果則展示了半球彎曲表面的奈米孔洞成長,此部分將針對其成形過程與原因進行驗證探討。35〜45 nm 孔洞大小的三維多孔氧化鋁膜已經實現微觀尺度(2μm)矽珠的表面上。此外,研究成果也證實鋁薄膜中殘留應力將影響陽極氧化過程的孔洞成長。殘留張應力會抵消氧化鋁膨脹之壓應力而減少其 AAO 塑性變形行為,使得孔洞間距變小、孔洞密度增加。最後證實,球形氧化鋁膜的三維疊加納米顯微提供了用於增強大的光催化大的比表面積。相比單尺度AAO薄膜,三維疊加納米顯微增加1.57倍表面積和表現出與後15小時的光降解的50 % MB的濃度高的光催化性能。

    Application of micro nano structure and direction has been the subject of much research. Traditionally micron manufacturing process to MEMS-based system. The CO2 laser of 10.6 μm in wavelength is an inexpensive, rapid and flexible one for the soft polymer processing. It has been widely applied to the fabrication of microchannel ablation, and modification in the categories of MEMS, bio-chip, optical/optoelectronic devices, displays and laser dentistry. The basic CO2 laser physics is photo-thermal mechanism for material removal therefore some defects of debris, bulges, cracks and scorches around ablated microstructure are formed during laser processing in air which degrades the device yield and quality for bonding. And anodic aluminum oxide (AAO) containing high-aspect ratio pore channels is widely used as a template for fabricating nanowires or other one-dimensional nanostructures. This study was mainly focused on the development of process improvement and application of micro-nano structures, nano-micro-development and production of the composite structure.
    The feasibility of the proposed approach is demonstrated by fabricating two micromixers with Y-shaped and T-shaped microchannels, respectively. It shows that for a designed channel width of 100 μm, the metallic mask reduces the ablated channel width from 268 to 103 μm. Moreover, the bulge height around the rims of the channel is reduced from 8.3 to <0.2 μm. And the two-casting PDMS process, and PLGA molding has been demonstrated for fabricating biodegradable polymer microneedle arrays. It can diminish the direct CO2 laser ablation of the PDMS surface with thermal defects of scorches, re-solidification and shrinkage.The second hydrophobic PDMS female mold is reusable for synthesizing the PLGA biodegradable microneedle array. The nude mouse skin penetration test shows that the microneedle array can stab the skin for the left pore array. The integrated process of metal microparts using 1064 nm Nd:YVO4 laser direct write patterning of indium tin oxide (ITO) thin films on glass, followed by the electrochemical deposition of copper (Cu) on the pattern.
    Highly ordered UV curable resins nanopillar arrays were fabricated using AAO templates, consequently to tailor the resonance frequency of the Ag nanopillar arrays. This method solves the nonflatness-induced defect issue in the conventional nanoimprint technique, and allows highquality duplications of nanometer templates features. Periodic hierarchical double structured nanopillar arrays (small nanopillars (diameter: about 30 nm) in a large nanopillars (diameter: about 110 nm) were obtained by the UV curable resins molding from AAO template. The Ag nanopillar arrays give reproducible SERS at a detection limit of 107 M using Methylene blue (MB) as probing molecules. On the other hand, the growth behavior of porous alumina on a hemisphere curved surface has been examined and discussed by an HPA process on low-purity bulk Al at room temperature. The 3D porous alumina oxide films with a nanopore (35~45 nm) structure have been realized on the surface of micro-scale (2 µm) silica beads. In addition, the role and effect of residual stress on pore generation of AAO have been investigated into anodizing the various-residual-stresses aluminium films. The tensile residual stress lessened the compressive oxide growth stress to reduce AAO plastic deformation leading to smaller pore distance and higher pore density. Finally, improved the 3D superimposed nano-microstructures of spherical AAO film provides a large specific surface area for enhancing great photocatalytic. Compared to single-scale AAO films, 3D superimposed nano microstructures increased 1.57 times surface areas and exhibits high photocatalytic performance with MB concentration of 50% after 15 hr photo-degradation.

    中文摘要 I Abstract III Acknowledgement VI Table of Contents VII List of Tables X List of Figures XI Nomenclature XVI Chapter 1 Introduction 1 1-1 Background of the research 1 1-1-1 Micro-scale structure 2 1-1-2 Nano-scale structure 2 1.2 Purpose of the research 3 Chapter 2 Literature Review 5 2-1 Laser machining technique 5 2-1-1 Effects laser processing on polymer substrate 7 2-1-2 Effects laser processing on metal film 8 2-2 Nanoporous AAO template 10 2-2-1 Anodization of Al film on structure 11 2-2-2 Multi-scale AAO structure 12 Chapter 3 Experiment and numerical simulation design 15 3-1 Experiment equipments 15 3-2 Experiment design and measurement 18 3-2-1 Foil-assisted CO2 laser micromachining 18 3-2-2 Biodegradable microneedles array by CO2 laser processing 18 3-2-3 Nd:YVO4 1064 nm laser for micro parts processing 20 3-2-4 Nanopillar arrays 22 3-2-5 Thin-film spherical multi-scale AAO structure templates 24 3-2-6 Patterning circular multi-scale AAO structure 25 Chapter 4 Micro scale structure fabrication and application 27 4-1 Micro scale structure fabrication on laser for defects improvement 27 4-2 Metal film protection to microfluidic chip fabrication using CO2 laser ablation 28 4-2-1 Capillary-driven mix-fluidic chip fabrication 28 4-2-2 Foil-assisted CO2 laser micromachining 33 4-2-3 Measure capillary-driven mix-fluidic chip 34 4-3 Biodegradable microneedles array by integrating CO2 laser processing and polymer molding 36 4-3-1 Laser processing for defects improvement on PMMA 37 4-3-2 Biodegradable microneedles array fabrication 43 4-3-3 Measure microneedles pierced across nude mice skin 50 4-4 Selective patterning of indium tin oxide films using 1064 nm laser for metal micro parts processing 52 4-4-1 The corresponding illustrations of laser spot overlaps and line-scan spacing 52 4-4-2 ITO patterns fabrication 55 4-4-3 Electroforming and release from the patterned ITO polygons molds 58 Chapter 5 Nano-scale structure fabrication and application 61 5-1 AAO template molding for nano-scale structure fabrication 61 5-1-1 Effects nanopores size of anodization voltage 61 5-1-2 Effects of nanopillar array molding from AAO template 64 5-2 Improved SERS performance by AAO substrate with silver nanopillar arrays 67 5-2-1 SERS substrates with the silver nanoparticles deposited on the nano-pillar array 67 5-2-2 SERS reflection measurement was performed to characterize the SERS enhancement factor 71 5-3 Cell proliferation, adhesion, and migration on the nanopillar structure with A AO process 75 5-3-1 A nanopillar array modulates cell adhesion 76 5-3-2 Wound healing assay by Ibidi 80 Chapter 6 Multi-scale structure fabrication and application 84 6-1 Fabrication of thin-film spherical AAO templates using superimposed nano-microstructures 86 6-1-1 AAO for larger spherical surface area 87 6-1-2 Growth and effects of nanopores in spherical micro surface 91 6-1-3 Photocatalytic performance of TiO2 film on 3D spherical AAO 95 6-2 A rapid and low-cost approach for patterning circular AAO microstructure on chip using direct imprinting method 97 6-2-1 Growth and effects of nanopores in curve micro surface 97 6-2-2 The antireflective of multi-scale structure surfaces 101 Chapter 7 Conclusions and Future Works 103 7-1 Conclusions 103 7-2 Future Works 105 Reference 107 Vita 117

    1. A. Kaldos, H. J. Pieper, E. Wolf and M. Krause, “Laser machining in die making a modern rapid tooling process”, Journal of Materials Processing Technology, vol. 155–156, pp. 1815, 2004.
    2. William M. Steen, “Handbook of Laser Material Processing”, Springer, New York, p. 63, 1991.
    3. Y. Xia, Q. Wang, L. Mei, C. Tan, S. Tue, B. Xu and X. Liu, “Laser ablation of Si, Ge, ZrO2 and Cu in air”, J. Phys. D: Appl. Phys., vol. 24, pp. 1933, 1991.
    4. G. Han and P. T. Murray, “Laser-plasma interactions in 532 nm ablation of Si”, J. Appl. Phys., vol. 88, pp. 1184, 2000.
    5. J. Ren, S. S. Orlov and L. Hesselink, “Rear surface spallation on single-crystal silicon in nanosecond laser micromachining”, J. Appl. Phys., vol. 97, 104304, 2005.
    6. M. C. Gower, “Industrial applications of laser micromachining”, Opt. Express, vol. 7, pp. 56, 2000.
    7. H. C. Le, R. W. Dreyfus, W. Marine, M. Sentis and I. A. Movtchan, “Laser ablation induced formation of nanoparticles and nanocrystal networks”, Appl. Surf. Sci., vol. 96-98, pp. 164, 1996.
    8. J. Ren, M. Kell and L. Hesselink,” Laser ablation of silicon in water with nanosecond and femtosecond pulses”, Opt. Lett., vol. 30, pp. 1740, 2005.
    9. J. S. Yahng, B. H. Chon, C. H. Kim, S. C. Jeoung and H. R. Kim,” Nonlinear enhancement of femtosecond laser ablation efficiency by hybridization with nanosecond laser”, Opt. Express, vol. 14, pp. 9544,2006.
    10. W. J. Wang, Y. F. Lu, C. W. An, M. H. Hong and T. C. Chong, “Laser microfabrication of transparent hard materials and signal di agnostics”, Appl. Surf. Sci., vol. 186, pp. 594, 2002.
    11. C. S. Nielsen and P. Balling, “Deep drilling of metals with ultrashort laser pulses: A two-stage process”, Journal of Applied Physics, vol. 99, 093101, 2006.
    12. A. Weck, T. H. R. Crawford, D. S. Wilkinson, H. K. Haugen and J. S. Preston, “Laser drilling of high aspect ratio holes in copper with femtosecond, picosecond and nanosecond pulse”, Appl. Phys. A, vol. 90, pp. 537-543, 2008.
    13. J. Cheng, W. Perrie, M. Sharp, S. P. Edwardson, N. G. Semaltianos, G. Dearden and K. G. Watkins, “Single-pulse drilling study on Au, Al and Ti alloy by using a picosecond laser”, Appl. Phys. A, vol. 95, pp. 739-746, 2009.
    14. K. Venkatakrishnan, N. Sudani and B. Tan, “A high repetition rate femtosecond laser for thin silicon wafer dicing”, J. Micromech. Microeng., vol. 18, 075032 (7pp), 2008.
    15. B. Tan and K. Venkatakrishnan, “Nd–YAG laser microvia drilling for interconnection application”, J. Micromech. Microeng., vol. 17, pp. 1511-1517, 200).
    16. B. Tan, S. Panchatsharam and K. Venkatakrishnan, “High repetition rate femtosecond laser forming sub-10 μm diameter interconnection vias”, J. Phys. D: Appl. Phys., vol. 42, 065102 (9pp), 2009.
    17. A. Vogel, J. Noack, G. Huttman, G. Paltauf, “Mechanisms of femtosecond laser nano surgery of biological cells and tissues”, Appl. Phys. B, vol. 81, pp. 1015, 2005.
    18. M. Ohnishi, H. Shikata, M. Sakakura, Y. Shimotsuma, K. Miura and K. Hirao, “Micro-hole Processing of Polyimide Film by Ultra-Short Laser Pulses and Its Applications”, Appl. Phys. A, vol. 98, pp. 123, 201).
    19. Chen Y, Zhang L, Chen G, “Fabrication, modification, and application of poly (methyl methacrylate) microfluidic chips”, Electrophoresis, vol. 29, pp. 1801–1814, 2008.
    20. Cheng JY, Wei CW, Hsu KH, Young TH, “Direct-write laser micromachining and universal surface modification of PMMA for device development”, Sens Actuators B, vol. 99, pp.186–196, 2004.
    21. Chung CK, Lin SL, “On the fabrication of minimizing bulges and reducing the feature dimensions of microchannels using novel CO2 laser micromachining”, J Micromech Microeng, vol. 2, 065023, 2011.
    22. Chung CK, Shih TR, “A rhombic micromixer with asymmetrical flow for enhancing mixing”, J Micromech Microeng, vol. 17, pp.2495–2504, 2007.
    23. Gerlach A, Knebel G, Guber AE, Heckele M, Herrmann D, Muslija A, Sshaller TH, “Microfabrication of single-use plastic microfluidic devices for high-throughput screening and DNA analysis”, Microsyst Technol, vol. 7, pp.265–268, 200).
    24. Huang YG, Liu SB, Yang W, Yu CX, “Surface roughness analysis and improvement of PMMA-based microfluidic chip chambers by CO2 laser cutting”, Appl Surf Sci, vol. 256, pp.1675–1678, 2010.
    25. Huikko K, Kostiainen R, Kotiaho T, “Introduction to micro-analytical systems: bioanalytical and pharmaceutical applications”, Eur J Pharm Sci, vol. 20, pp.149–171, 2003.
    26. Jensen MF, Noerholm M, Christensen LH, Geschke O, “Microstructure fabrication with a CO2 laser system: characterization and fabrication of cavities produced by raster scanning of the laser beam”, Lab Chip, vol. 3, pp.302–307, 2003.
    27. Liang L, Ai Y, Zhu J, Qian S, Xuan X, “Wall-induced lateral migration in particle electrophoresis through a rectangular microchannel”, J Colloid Interface Sci, vol. 347, pp.142–146, 2010.
    28. Pemg BY, Wu CW, Shen YK, Lin Y, “Microfluidic chip fabrication using hot embossing and thermal bonding of COP”, Polym Adv Technol, vol. 21, pp.457–466, 2010.
    29. Reotting O, Ropke W, Becker H, Gartner C, “Polymer microfabrication technologies”, Microsyst Technol, vol. 8, pp.32–36, 2002.
    30. Wang ZK, Zheng HY, Lim RYH, Wang ZF, Lam YC, “Improving surface smoothness of laser-fabricated microchannels for microfluidic application”, J Micromech Microeng, vol. 21, 095008, 2011.
    31. Prausnitz M R, Mitragotri S and Langer R, “Current status and future potential of transdermal drug delivery”, Nat. Rev. Drug Discovery, vol. 3, pp.115–24, 2004.
    32. Khumpuang S, Horade M, Fujioka K and Sugiyama S, “Microneedle fabrication using the plane pattern to crosssection transfer method”, Smart Mater. Struct., vol. 15, pp.600–6, 2006.
    33. Park J H, Allen M G and Prausnitz M R, “Polymer microneedles for controlled-release drug delivery”, Pharm.Res., vol. 23, pp.1008–19, 2006.
    34. Yoon Y, Lee D W and Lee J B, “Surface modified nanopatterned SU-8 pillar array optically transparent superhydrophobic thin film”, J. Micromech. Microeng., vol. 22, 035012, 2012.
    35. Zhu M W, Li H W, Chen X L, Tang Y F, Lu M H and Chen Y F, “Silica needle template fabrication of metal hollow microneedle arrays”, J. Micromech. Microeng., vol. 19, 115010, 2009.
    36. O’Mahony C, Pini F, Blake A, Webster C, O’Brien J and McCarthy K G, “Microneedle-based electrodes with integrated through-silicon via for biopotential recording”, Sensors Actuators A, vol. 186, pp.130–6, 2012.
    37. Kim K, Park D S, Lu H M, Che W, Kim K, Lee J B and Ahn C H, “A tapered hollow metallic microneedle array using backside exposure of SU-8”, J. Micromech. Microeng., vol. 14, pp.597–603, 2004.
    38. Kim M Y, Jung B and Park J H, “Hydrogel swelling as a trigger to release biodegradable polymer microneedles in skin”, Biomaterials, vol. 33, pp.668–78, 2012.
    39. Park J H, Allen M G and Prausnitz M R, “Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery”, J. Control. Release, vol. 104, pp.51–66, 2005.
    40. McAllister D V, Wang P M, Davis S P, Park J H, Canatella P J, Allen M G and Prausnitz M R, “Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies”, Proc. Natl Acad. Sci. USA, vol. 100, pp.13755–60, 2003.
    41. Tseng A A, Chen Y T and Ma K J, “Fabrication of highaspect- ratio microstructures using excimer laser”, Opt. Lasers Eng. 41, pp.827–47 (2004).
    42. Chen Y T, Ma K J, Tseng A A and Chen P H, “Projection ablation of glass-based single and arrayed microstructures using excimer laser”, Opt. Laser Technol., vol. 37, pp.271–80, 2005.
    43. Moon S J and Lee S S, “A novel fabrication method of a microneedle array using inclined deep x-ray exposure”, J. Micromech. Microeng., vol. 15, pp.903–11, 2005.
    44. Sanaee Z and Mohajerzadeh S, “Ultrafine hollow needle formation on silicon”, J. Appl. Phys., vol. 107, 083711, 2010.
    45. Aoyagi S, Izumi H, Isono Y, Fukuda M and Ogaw H, “Laser fabrication of high aspect ratio thin holes on biodegradable polymer and its application to a microneedle”, Sensors Actuators A, vol. 139, pp.293–302, 2007.
    46. Zheng H Y, Lam Y C, Sundarraman C and Tran D V, “Influence of substrate cooling on femtosecond laser machined hole depth and diameter”, Appl. Phys. A, vol. 89, pp.559–63, 2007.
    47. H. Onoe, K. Matsumoto, I. Shimoyama, “Three-dimensional sequential self-assembly of micro-scale objects”, Small, vol. 3, pp.1383–1389, 2007.
    48. S. M. Yang, S. H. Kim, J. M. Lim, G. R. Yi, “Synthesis and assembly of structured colloidal particles”, J. Mater. Chem., vol. 18, pp.2177–2190, 2008.
    49. X. M. Jing, D. Chen, D. M. Fang, C. Huang, J. Q. Liu, X. Chen, “Multi-layer microstructure fabrication by combining bulk silicon micromachining and UV-LIGA technology”, J. Microelectronics, vol. 38, pp.120–124, 2007.
    50. C. H. Ho, K. P. Chin, C. R. Yang, H. M. Wu, S. L. Chen, “Ultrathick SU-8 mold formation and removal, and its application to the fabrication of LIGA-like micromotors with embedded roots”, Sensors and Actuators A, vol. 102, pp.130–138, 2002.
    51. C.J. Huang, Y.K. Su, S.L. Wu, “The effect of solvent on the etching of ITO electrode”, Materials Chemistry and Physics, vol. 84, pp.146–150, 2004.
    52. T. H. Tsai, Y. F. Wu, “Organic Acid Mixing to Improve ITO Film Etching in Flat Panel Display Manufacturing”, Journal of the Electrochemical Society, vol. 153, pp.86-90, 2006.
    53. F. Grisotto, R. Metaye, B.Jousselme, B. Geffroy, S. Palacin, and J. Charlier, “Scanning electrochemical microscopy as an etching tool for ITO patterning”, J. Mater. Chem., vol. 21, pp.1596-1600, 2011.
    54. S. Oh, H. Jung, Y. H. Kim, M. Kim, E. Yoo, Y. J. Choi, T. S. Yoon, H. H. Lee, “Characterization of ITO etching by spontaneously evaporated fume of hydrogen chloride”, Microelectronic Engineering, vol. 103, pp.173–176, 2013.
    55. G. Raciulcaitis, M. Brikas, M. Gedvils, G. Darcianovas, “Patterning of ITO Layer on Glass with High Repetition Rate Picosecond Lasers”, J. Laser Micro/Nanoengineering, vol. 2, pp.1-6, 2007.
    56. S. F. Tseng, W. T. Hsiao, K. C. Huang, D. Chiang, “The effect of laser patterning parameters on fluorine-doped tin oxide films deposited on glass substrates”, Applied Surface Science, vol. 257, pp.8813– 8819, 2011.
    57. A. Solieman, A. H. Moharram, M. A. Aegerter, “Patterning of nanoparticulate transparent conductive ITO films using UV light irradiation and UV laser beam writing”, Applied Surface Science, vol. 256, pp.1925–1929, 2010.
    58. Z. Kuang, W. Perrie, D. Liu, P. Fitzsimons, S. P. Edwardson, E. Fearon, G. Dearden, Ke. G. Watkins, “Ultrashort pulse laser patterning of indium tin oxide thin films on glass by uniform diffractive beam patterns”, Applied Surface Science, vol. 258, pp.7601– 7606, 2012.
    59. D. A. Willis and A. L. Dreier, “Laser micromachining of indium tin oxide films on polymer substrates by laser-induced delamination”, J. Phys. D: Appl. Phys., vol. 42, 045306, 2009.
    60. S. Xiao, S. A. Fernandes, A. Ostendorf, “Selective Patterning of ITO on flexible PET Substrate by 1064nm picosecond Laser”, Physics Procedia, vol. 12, pp.125–132, 2011.
    61. C. W. Cheng, J. S. Chen, and H. H. Chen, “Patterning of Crystalline ITO Using Infrared Nanosecond Fiber Laser Pulses”, Materials and Manufacturing Processes, vol. 25, pp.684–688, 2010.
    62. Z. H. Li, E. S. Cho, S. J. Kwon, “Laser direct patterning of the T-shaped ITO electrode for high-efficiency alternative current plasma display panels”, Applied Surface Science, vol. 257, pp.776–780, 2010.
    63. J. W. Diggle, T. C. Downie, and C. W. Goulding, "Anodic oxide films on aluminum," Chemical Reviews, vol. 69, pp. 365-&, 1969.
    64. A. Huczko, "Template-based synthesis of nanomaterials," Applied Physics a-Materials Science & Processing, vol. 70, pp. 365-376, 2000.
    65. G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gosele, "Highly ordered monocrystalline silver nanowire arrays," Journal of Applied Physics, vol. 91, pp. 3243-3247, 2002.
    66. J. Goldberger, R. R. He, Y. F. Zhang, S. W. Lee, H. Q. Yan, H. J. Choi, and P. D. Yang, "Single-crystal gallium nitride nanotubes," Nature, vol. 422, pp. 599-602, 2003.
    67. Y. Piao, H. Lim, J. Y. Chang, W. Y. Lee, and H. Kim, "Nanostructured materials prepared by use of ordered porous alumina membranes," Electrochimica Acta, vol. 50, pp. 2997-3013, 2005.
    68. T. Shimizu, T. Xie, J. Nishikawa, S. Shingubara, S. Senz, and U. Goesele, "Synthesis of vertical high-density epitaxial Si (100) nanowire arrays on a Si (100) substrate using an anodic aluminum oxide template," Advanced Materials, vol. 19, pp. 917-+, 2007.
    69. H. Masuda and K. Fukuda, "Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina," Science, vol. 268, pp. 1466-8, 1995.
    70. S. Ono, M. Saito, and H. Asoh, "Self-ordering of anodic porous alumina induced by local current concentration: Burning," Electrochemical and Solid State Letters, vol. 7, pp. B21-B24, 2004.
    71. W. Lee, R. Ji, U. Goesele, and K. Nielsch, "Fast fabrication of long-range ordered 96 porous alumina membranes by hard anodization," Nature Materials, vol. 5, pp. 741-747, 2006.
    72. J. P. O'Sullivan and G. C. Wood, "The morphology and mechanism of formation of porous anodic films on aluminum," Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 317, pp. 511-543, 1970.
    73. S. G. Yang, H. Zhu, D. L. Yu, Z. Q. Jin, S. L. Tang, and Y. W. Du, "Preparation and magnetic property of Fe nanowire array," Journal of Magnetism and Magnetic Materials, vol. 222, pp. 97-100, 2000.
    74. X. Y. Wang, X. Y. Wang, W. G. Huang, P. J. Sebastian, and S. Gamboa, "Sol-gel template synthesis of highly ordered MnO2 nanowire arrays," Journal of Power Sources, vol. 140, pp. 211-215, 2005.
    75. S. Rahman and H. Yang, "Nanopillar arrays of glassy carbon by anodic aluminum oxide nanoporous templates," Nano Letters, vol. 3, pp. 439-442, 2003.
    76. A. Bai, C. Hu, Y. Yang, and C. Lin, "Pore diameter control of anodic aluminum oxide with ordered array of nanopores," Electrochimica Acta, vol. 53, pp. 2258-2264, 2008.
    77. L. Zaraska, G. D. Sulka, J. Szeremeta, and M. Jaskula, "Porous anodic alumina formed by anodization of aluminum alloy (AA1050) and high purity aluminum," Electrochimica Acta, vol. 55, pp. 4377-4386, 2010.
    78. A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, "Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina," Journal of Applied Physics, vol. 84, pp. 6023-6026, 1998.
    79. A. L. Cai, H. Y. Zhang, H. Hua, and Z. B. Zhang, "Direct formation of self-assembled nanoporous aluminium oxide on SiO2 and Si substrates," Nanotechnology, vol. 13, pp. 627-630, 2002.
    80. S. Inoue, S.-Z. Chu, K. Wada, D. Li, and H. Haneda, "New roots to formation of nanostructures on glass surface through anodic oxidation of sputtered aluminum," Science and Technology of Advanced Materials, vol. 4, pp. 269-276, 2003.
    81. A. F. Feil, M. V. da Costa, L. Amaral, S. R. Teixeira, P. Migowski, J. Dupont, G. Machado, and S. B. Peripolli, "The influence of aluminum grain size on alumina nanoporous structure," Journal of Applied Physics, vol. 107, p. 026103, 2010.
    82. A. F. Feil, P. Migowski, J. Dupont, L. Amaral, and S. R. Teixeira, "Nanoporous Aluminum Oxide Thin Films on Si Substrate: Structural Changes as a Function of Interfacial Stress," Journal of Physical Chemistry C, vol. 115, pp. 7621-7627, 2011.
    83. V. C. Nettikaden, A. Baron-Wiechec, P. Bailey, T. C. Q. Noakes, P. Skeldon, and G. E. Thompson, "Formation of barrier-type anodic films on sputtering-deposited Al-Ti alloys," Corrosion Science, vol. 52, pp. 3717-3724, 2010.
    84. V. C. Nettikaden, H. Liu, P. Skeldon, and G. E. Thompson, "Porous anodic film formation on Al-Ti alloys in sulphuric acid," Corrosion Science, vol. 57, pp. 49-55, 2012.
    85. M. T. Wu, I. C. Leu, and M. H. Hon, "Anodization behavior of Al film on Si substrate with different interlayers for preparing Si-based nanoporous alumina template," Journal of Materials Research, vol. 19, pp. 888-895, 2004.
    86. M. S. Sander and L. S. Tan, "Nanoparticle arrays on surfaces fabricated using anodic alumina films as templates," Advanced Functional Materials, vol. 13, pp. 393-397, 2003.
    87. M. J. Kim, J. H. Choi, J. B. Park, S. K. Kim, J. B. Yoo, and C. Y. Park, "Growth characteristics of carbon nanotubes via aluminum nanopore template on Si substrate using PECVD," Thin Solid Films, vol. 435, pp. 312-317, 2003.
    88. N. V. Myung, J. Lim, J. P. Fleurial, M. Yun, W. West, and D. Choi, "Alumina nanotemplate fabrication on silicon substrate," Nanotechnology, vol. 15, pp. 833-838, 2004.
    89. S. K. Hwang, J. Lee, S. H. Jeong, P. S. Lee, and K. H. Lee, "Fabrication of carbon nanotube emitters in an anodic aluminium oxide nanotemplate on a Si wafer by multi-step anodization," Nanotechnology, vol. 16, pp. 850-858, 2005.
    90. G.-Y. Zhao, C.-L. Xu, D.-J. Guo, H. Li, and H.-L. Li, "Template preparation of Pt-Ru and Pt nanowire array electrodes on a Ti/Si substrate for methanol electro-oxidation," Journal of Power Sources, vol. 162, pp. 492-496, 2006.
    91. T. Shimizu, M. Nagayanagi, T. Ishida, O. Sakata, T. Oku, H. Sakaue, T. Takahagi, and S. Shingubara, "Epitaxial growth of Cu nanodot arrays using an AAO template on a Si substrate," Electrochemical and Solid State Letters, vol. 9, pp. J13-J16, 2006.
    92. M. Kokonou, A. G. Nassiopoulou, K. P. Giannakopoulos, A. Travlos, T. Stoica, and S. Kennou, "Growth and characterization of high density stoichiometric SiO2 dot arrays on Si through an anodic porous alumina template," Nanotechnology, vol. 17, pp. 2146-2151, 2006.
    93. V. Zuni, S. D. Skapin, D. Suvorov, “The assembly of TiO2 nanoparticles into micrometer-sized structures, photocatalytically active under UV and vis light,” J. Am. Ceram. Soc., vol. 98, pp.2997-3005, 2015.
    94. C. D.W. Wilkinson, M. Riehle, M. Wood, J. Gallagher, A.S.G. Curtis, “The use of materials patterned on a nano- and micro-metric scale in cellular engineering,” Materials Science and Engineering C, vol. 19, pp.263–269, 2002.
    95. M. Harada, T. Kondo, T. Yanagishita, K. Nishio, H. Masuda, “Anodic porous alumina masks with checkerboard pattern,” Applied Physics Express, vol. 3, 015001, 2010.
    96. K. Lu, “Newfound capability of focused ion beam patterning guided anodization,” Electrochimica Acta, vol. 63, pp.256– 262, 2012.
    97. W. Lee, R. Ji, C. A. Ross, U. Gcsele, K. Nielsch, “Wafer-scale Ni imprint stamps for porous alumina membranes based on interference lithography,” small, vol. 2, pp.978 – 982, 2006.
    98. H. Asoh, S. Ono, T. Hirose, M. Nakao, H. Masuda, “Growth of anodic porous alumina with square cells,” Electrochimica Acta, vol. 48, pp.3171-3174, 2003.
    99. H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, T. Tamamur, “Square and triangular nanohole array architectures in anodic alumina,” Adv. Mater. vol. 13, pp.189-192, 2001.
    100. B. Chen, K.Lu, J. A. Geldmeier, “Highly ordered titania nanotube arrays with square, triangular, and sunflower structures,” Chem. Commun., vol. 47, pp.10085–10087, 2011.
    101. C. Y. Liu, A. Datta, and Y. L. Wang, “Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces,” Applied Physics Letters, vol. 78, pp.120-122, 2001.
    102. B. Chen, K. Lu, Z. Tian, “Understanding focused ion beam guided anodic alumina nanopore development,” Electrochimica Acta, vol. 56, pp.9802– 9807, 2011.
    103. J. W. Jang, Z. Zheng, O. S. Lee, W. Shim, G. Zheng, G. C. Schatz, C. A. Mirkin, “Designing unit cell in three-dimensional periodic nanostructures using colloidal lithography,” Nano Lett., vol. 10, pp.4399-4404, 2010.
    104. M. Fang, H. Lin, H. Y. Cheung, S. P. Yip, F. Xiu, C.Y. Wong, “Optical Nanoscale Patterning Through Surface-Textured Polymer Films,” Adv. Optical Mater., vol. 2, pp.855–860, 2014.
    105. B. D. Gates, Q. Xu, M.Stewart, D. Ryan, C. G. Willson, G. M. Whitesides, “New Approaches to Nanofabrication: Molding, Printing, and Other Techniques,” Chem. Rev., vol. 105, pp.1171-1196, 2005.
    106. H. Masuda, K. Yasui, Y. Sakamoto, M. Nakao, “Ideally ordered anodic porous alumina mask prepared by imprinting of vacuum- evaporated Al on Si,” Jpn. J. Appl. Phys., vol. 40, pp.1267–1269, 2001.
    107. S. Yang, Y. Lei, “Recent progress on surface pattern fabrications based on monolayer colloidal crystal templates and related applications,” Nanoscale Reviews, vol. 3, pp.2768-2782, 2011.
    108. K. Yasui, K. Nishio, H. Nunokawa, H. Masuda, “Ideally ordered anodic porous alumina with Sub- 50 nm hole intervals based on imprinting using metal molds,” J. Vac. Sci. Technol., vol. 23, pp.9-12, 2005.
    109. Y. Matsui, K. Nishio, H. Masuda, “Highly Ordered Anodic Porous Alumina with 13-nm Hole Intervals Using a 2D Array of Monodisperse Nanoparticles as a Template,” small, vol. 2, pp.522 – 525, 2006.
    110. H. K.Raut, S. S.Dinachali, Y. C. Loke, R. Ganesan, K. K. Ansah-Antwi, A.Gora, E. H. Khoo, V. A.Ganesh, M.S. M. Saifullah, S. Ramakrishna, “Multiscale Ommatidial Arrays with Broadband and Omnidirectional Antireflection and Antifogging Properties by Sacrificial Layer Mediated Nanoimprinting,” ACS Appl. Mater. Interfaces, vol. 9, pp.1305−1314, 2015.
    111. X. Li, Y. Zhang, Z. X. Shen, H. J. Fan, “Highly Ordered Arrays of Particle-in-Bowl Plasmonic Nanostructures for Surface-Enhanced Raman Scattering,” small, vol. 16, pp.2548–2554, 2012.
    112. F. M. Huang, D. Wilding, J. D. Speed, A. E. Russell, P. N. Bartlett, J. J. Baumberg, “Dressing Plasmons in Particle-in-Cavity Architectures,” Nano Lett., vol. 11, pp.1221–1226, 2011.
    113. S. P. Burgos, R. Waele, A. Polman, H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nature Materials, vol. 9, pp.407-412, 2010.
    114. C. C. Ho, K. Zhao, T. Y. Lee, “Quasi-3D gold nanoring cavity arrays with high-density hot-spots for SERS applications via nanosphere lithography,” Nanoscale, vol. 6, pp.8606-8611, 2014.

    無法下載圖示 校內:2026-12-31公開
    校外:2026-12-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE