簡易檢索 / 詳目顯示

研究生: 蔡哲軒
Tsai, Che-Hsuan
論文名稱: 實驗室評估石膠泥瀝青混凝土(SMA)應用於機場道面
Laboratory Evaluation of Stone Mastic Asphalt Applied to Airport Pavements
指導教授: 陳建旭
Chen, Jian-Shiuh
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 143
中文關鍵詞: 石膠泥瀝青混凝土(SMA)外物損害(FOD)抗滑特性抗車轍能力
外文關鍵詞: stone matrix asphalt (SMA), foreign object damage (FOD), sliding characteristics, rutting resistance
相關次數: 點閱:63下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    由於航空運輸量與荷重不斷增加,部份機場道面已達設計極限,飛機行駛舒適度和安全性受到影響,有些道面因此需要整建以提升服務水準;此外,未來有可能需要提供更大型的民航機,如空中巴士 A380於國際機場起降,鋪面的結構穩定性更需考量。在整建工法中,將原有剛性鋪面刨除重鋪不但耗時且成本較高,若採用具有抗車轍能力的石膠泥瀝青混凝土(SMA)是一項值得考量的方向。本研究以三種SMA級配以及機場密級配拌和改質III型瀝青黏結料進行各項瀝青混凝土工程性質試驗,並以Cantabro磨損試驗評估機場道面抵抗剝脫能力,以降低行駛航機受FOD機率,以英式擺錘試驗(BPT)和鋪砂法量測平均紋理深度來評估機場道面之抗滑特性,且比較不同載重狀況下各級配瀝青混凝土抵抗車轍變形之能力,以找出最適合鋪築於機場道面之瀝青混凝土。
    試驗結果顯示與機場道面相關的績效性質如Cantabro磨損試驗、抗滑特性和抵抗車轍能力以SMA級配表現較佳。在抗滑特性上發現,標稱最大粒徑較大的SMA級配,較能在鋪面含水時提供較佳的抗滑特性。在試體未受水侵害的情況下,密級配之Cantabro磨損率明顯較SMA級配高,受到水侵害1天後發現,大致有級配越粗磨損率越大的趨勢。隨著載重的增加,各級配之車轍深度也會顯著的增加,並發現受到7天水侵害之試體的車轍深度會明顯提高。抵抗各種載重之車轍能力大致以12.5 mm NMAS公路SMA級配較為穩定,若提高壓實度至100%,則19 mm NMAS公路SMA則可在未受水侵害的情況下提供較佳的抵抗車轍能力。

    關鍵字:石膠泥瀝青混凝土(SMA)、外物損害(FOD)、抗滑特性、
    抗車轍能力。

    Abstract

    Due to increasingly high concentration of aircraft wheel loads, the premature failure may occur, thereby leading to terminate the service life of airfield pavements. In order to ensure the safety as well as riding quality of runway and taxiway in the airport, the functional and structural stability of the airfield pavements should be taken into account. However, it is very time-consuming and expensive to resurface the existing rigid pavement. The use of stone matrix asphalt (SMA) as a airfield pavement surface course is a consideration because of its better resistance to deformation. In this study, engineering properties of three types of SMA and one dense-graded asphalt concrete (DGAC) with modified asphalt binder type III were evaluated by means of conventional laboratory tests. In addition, Cantabro wearing test was carried out to assess the stripping property in order to simulate the foreign object damage (FOD) of airfield pavements. British pendulum tester (BPT) and sand patch test were performed to assess the sliding and friction properties of airfield pavements.
    The results showed that the airfield pavement-related performance properties such as: Cantabro loss percentage, texture depth and dynamic stability, the SMA had better performance than other DGAC. According to the sliding characteristics, SMA with larger nominal maximum aggregate size (NMAS) can provide better sliding properties on the wet pavement. In the case of specimens without moisture damage, the Cantabro loss percentage for the DGAC was significantly higher than that of the SMA. Generally, the coarser mixtures had the better resistance to wearing. With increasing the wheel load, the rut depth significant increased for all mixtures. It was found that the mixtures with moisture damaged for 7 days, the rut depth had a considerable increase. The results also showed that the 12.5 mm NMAS SMA is the optimum option for airfield pavements. It was also concluded that the 19 mm NMAS SMA provided the better resistance to rutting if the 100% compaction was achieved .

    Keywords: stone matrix asphalt (SMA), foreign object damage (FOD), sliding characteristics, rutting resistance.

    目錄 摘要 I Abstract III 目錄 VII 圖目錄 XI 表目錄 XIV 第一章 緒論 1-1 1.1前言 1-1 1.2研究動機 1-3 1.3研究目的 1-4 1.4研究範圍 1-5 第二章 文獻回顧 2-1 2.1 石膠泥瀝青混凝土 2-1 2.1.1石膠泥瀝青混凝土之簡介 2-1 2.1.2粒料標稱最大粒徑 2-3 2.1.3 纖維 2-3 2.2 瀝青混凝土車轍行為 2-5 2.2.1 車轍變形機制 2-5 2.3 瀝青混凝土鋪面之抗滑特性 2-7 2.4公路與機場鋪面之差異 2-9 2.4.1載重狀況 2-9 2.4.2級配 2-10 2.5 現今國內石膠泥瀝青混凝土之發展狀況 2-15 2.6 各國SMA於機場道面之應用 2-18 2.6.1澳洲 2-18 2.6.2 中國 2-20 2.6.3 歐洲 2-24 2.6.4 美國 2-29 2.7 各國機場SMA規範整理 2-30 第三章 研究計畫 3-1 3.1研究流程 3-1 3.2試驗材料 3-3 3.2.1 瀝青黏結料基本性質 3-3 3.2.2 粒料基本性質 3-4 3.2.3 纖維基本性質 3-5 3.3 SMA配比設計 3-6 3.3.1 SMA配比設計原理 3-6 3.3.2 SMA配比設計流程 3-7 3.4瀝青混凝土之工程性質試驗 3-12 3.4.1 馬歇爾穩定值、流度值試驗 3-12 3.4.2 間接張力試驗 3-13 3.4.3 浸水殘餘強度試驗 3-13 3.4.4 回彈模數試驗 3-14 3.4.5 Cantabro磨損試驗 3-15 3.4.6 鋪砂試驗 3-15 3.4.7 英式擺錘試驗 3-17 3.4.8 車轍輪跡試驗 3-18 3.5 瀝青薄膜厚度計算 3-20 第四章 試驗結果與討論 4-1 4.1材料基本物性試驗 4-1 4.1.1瀝青黏結料基本性質 4-1 4.1.2粒料基本物性試驗 4-2 4.1.3木質纖維基本物性試驗 4-2 4.2配合設計 4-3 4.2.1粒料級配 4-3 4.2.2 瀝青用量 4-7 4.3 瀝青混凝土之工程性質 4-12 4.3.1馬歇爾穩定值和流度值 4-12 4.3.2間接張力值 4-14 4.3.3回彈模數值(MR) 4-15 4.3.4殘餘強度指數 4-16 4.3.5 Cantabro磨損試驗 4-17 4.3.6 瀝青薄膜厚度 4-20 4.3.7巨觀紋理(鋪砂法) 4-21 4.3.8抗滑特性(BPN法) 4-22 4.3.9車轍輪跡試驗 4-23 4.4國道6號19 mm SMA鋪面各項試驗結果 4-32 4.4.1 基本試驗 4-33 4.4.2 回彈模數 4-34 4.4.3間接張力 4-36 4.5 工程性質績效 4-37 第五章 結論與建議 5-1 5.1 結論 5-1 5.2 建議 5-3 參考文獻 參-1

    參考文獻

    沈金安 (1999)「改性瀝青與SMA路面」,人民交通出版社,中國。

    林桂儀 (2006)「不同添加料對瀝青膠漿特性之影響」,博士論文,國立成功大學土木工程研究所,台南。

    林志棟、林秉祁、蘇育民、潘承緯 (2001)「台灣地區石膠泥瀝青混凝土(SMA)配合設計方法之擬訂」,第十一屆鋪面工程學術研討會論文集,P.35-42,桃園。

    陳虹潔 (2000) 「骨材顆粒組構及型態對瀝青混凝土抗變形之影響」,碩士論文,國立成功大學土木工程研究所,台南。

    黃隆昇 (2003) 「瀝青混凝土巨觀車轍及微觀軌跡之行為機制分析」,博士論文,國立成功大學土木工程研究所,台南。

    Asi, I.M., (2006). “Laboratory Comparison Study for the Use of Stone Matrix Asphalt in Hot Weather Climates,” Construction and Building Materials, Vol.20 pp.982~989.

    Akbulut, H., Woodside, A.R. and Woodward, W.D.H., (2000). “Polymer Modified Cellulose Pellet Fiber in Bituminous Mixtures,” Proceedings of the 2nd Eurasphalt and Eurobitume Congress, Barcelona, Spain, pp.674-677.

    AL-Hadidy, A. I. and Tan, Y.Q., (2010). “Comparative Performance of the SMAC Made with the SBS and ST-Modified Binders,” Journal of Materials in Civil Engineering, Vol.22 pp.580-587.

    Angle Roh, (2009). “績效評估” http://wiki.mbalib.com/zh-tw/%E7%BB%A9%E6%95%88%E8%AF%84%E4%BC%B0,MBA智庫百科,2011年6月19日瀏覽。

    Brown, E.R. and Mallick, R.B., (1995). “Evaluation of Stone-on-Stone Contact in Stone Matrix Asphalt,” Transportation Research Board:Journal of Transportation Research Record 1492, pp.208-215.
    Brown, E.R., Haddock, J.E., Mallick, R.B., and Lynn, T.A., (1997). “Development of a Mixture Design Procedure for Stone Matrix Asphalt (SMA), ” Journal of the Association of Asphalt Paving Technologists, Vol.66, pp.1-30.

    Brown, E.R., and Cooley, L.A., (1999). “Designing Stone Matrix Asphalt Mixtures for Rut-Resistant Pavement,” NCHRP Report 425.

    Brown, E.R., Cooley, L.A., Hanson, D., Lynn, C., Powell, R.B., Prowell, B.D. and Watson, D., (2002). “NCAT Test Track: Design, Construction and Performance,” NCAT 02-12.

    Brown, E. R., (2006). “Inspection of Runways at Spangdahlem and Aviano and Discussions about Quality of HMA Work,” Letter Report to Al Fraga, October.

    Brown, E. R., (2008). “Use of SMA on Airfield Pavements in the U.S.” Tri-Services Airfield Pavements Conference, Phoenix, Arizona, April.

    Boyer, B. and Buncher, M., (2009). “Guidelines for Use of Highway Specifications for HMA Airport Pavements,” Final Report, Airfield Asphalt Pavement Technology Program, Project 06-05, May 20.

    Cooley, L.A., Brown, E.R. and Watson, D.E., (2000). “Evaluation of Open-Graded Friction Course Mixtures Containing Cellulose Fibers,” Transportation Research Board:Journal of Transportation Research Record 1723, pp.19-25.

    Campbell, C., (1999). “The Use of Stone Mastic Asphalt on Aircraft on Pavement,” Final Report, Deakin University, Melbourne, Australia.

    De Backer, C. and Glorie, G., (2003). “The Renovation of the Runway on Brussels National Airport:Fast and High-Quality Execution,” Proceedings of XXIInd PIARC World Road Congress, Durban, South Africa.

    Elsenaar, P. M. W., Reichert, J. and Sauterey, R., (1976). “Pavement Characteristics and Skid Resistance,” Transportation Research Record 622, Transportation Research Board, National Academy of Sciences.

    Federal Aviation Administration (1997). “Advisory Circular: Measurement, Construction and Maintenance of Skid-Resistant Airport Pavement Surfaces.” AC 150/5320-12C.

    Federal Aviation Administration (2004). “Advisory Circular: Construction of Airport Pavements.” AC 150/5370-10C.

    Fraga, A. N., (2000). “Use of Stone Matrix Asphalt (SMA) for the Runway Restoration at Aviano AB, Italy,” Transportation Systems 2000 Conference, San Antonio, TX.

    Hanson, D.I. and Prowell, B.D., (2004). “Evaluation of Circular Texture Meter for Measuring Surface Texture of Pavements.” NCAT No. 04-05, Auburn, AL.

    Jared, D., (2003). “Summary of Georgia’s Experience with Stone Matrix Asphalt Mixes,” Georgia Department of Transportation, Forrest Park, GA.

    Lynn, T.A., Brown, E.R., and Cooley, L.A., (1999). “Evaluation of Aggregate Size Characteristics in Stone Matrix Asphalt and Superpave Mixtures,” Transportation Research Board:Journal of Transportation Research Record 1681, pp.19-27.

    Nejad, F.M., Aflaki, E. and Mohammadi, M.A., (2010). “Fatigue Behavior of SMA and HMA mixtures,” Construction and Building Materials, Vol.24 pp.1158-1165.

    Nikolaids, A., (2000). “Rutting and Volumetric Properties of SMA Mixture, ”Proceedings Institution of Civil Engineers Transport, Vol.141, No.3, pp.135-141.

    Prowell, B., Watson, D.E., Hurley, G.C. and Brown E.R., (2008). “Evaluation of Stone Matrix Asphalt (SMA) for Airfield Pavements,” Federal Aviation Administration (FAA), Cooperative Agreement No.04-G-038.
    Peltonen, P.V., (1991). “Characterization and Testing of Fiber-modified Bitumen Composites,” Journal of Materials Science, Vol.26, pp.5618-5622.

    Razali, M., Kadir, A. and Mahmud, A.R., (2005). “Cost Comparison between Stone Mastic Asphalt and Asphalt Concrete Wearing Course,” American Journal of Applied Sciences 2 (9) pp.1350-1355.

    Research Group for Street and Traffic Construction (2005). “Guidelines for Construction of Airfields with Asphalt,” FGCV, Translated by Price, S.

    State of OHIO Department of Transportation (2002). “Supplemental Specification 874:Ultrathin Bonded Asphalt Concrete,” July 19.

    Witczak, M.W., Bonaquist, R., Quintus, H.V., and Kaloush, K., (2000). “Specimen Geomentry and Aggregate Size Effects in Uniaxial Compression and Constant Height Shear Tests,” Journal of the Association of Asphalt Paving Technologists, Vol.69, pp.733-793.

    World Road Association (PIARC), (1987). “Report of the Committee on Surface Characteristics,” XVIII World Road Congress, Brussels, Belgium.

    Woolpert, Inc., (2006). “Pavement Investigation Report for Taxiway “H” Reconstruction Indianapolis International Airport,” Indianapolis.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE