簡易檢索 / 詳目顯示

研究生: 林易辰
Lin, Yi-Chen
論文名稱: 多變流器控制策略於孤島型微電網之研究
Study on Multi-Inverter Control Strategies for Islanded Microgrids
指導教授: 張簡樂仁
Chang-Chien, Le-Ren
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 159
中文關鍵詞: 自適應虛擬阻抗孤島微電網虛功率共享二次補償
外文關鍵詞: Adaptive virtual impedance, islanded microgrid, reactive power sharing, secondary compensation
相關次數: 點閱:9下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著再生能源滲透率提升,微電網成為強化電力系統韌性的重要方案,尤其在獨立運行的交流孤島微電網中,多台變流器並聯運行常有虛功率共享不均、電壓與頻率偏移等問題,影響系統穩定性。本文針對孤島型微電網,提出結合自適應虛擬阻抗與PI補償的控制策略,提升虛功率共享準確性並改善穩態電壓與頻率調節。研究首先介紹VF控制、PQ控制及垂降控制的基本理論,並透過模態分析探討控制參數對阻尼比與穩定性的影響,同時調整Droop參數觀察其對功率分配及振盪的效應,並提出最佳的設定方案。最後,利用DIgSILENT PowerFactory模擬不同負載變化與阻抗不匹配的情境,驗證控制策略效能。結果顯示,自適應虛擬阻抗有效抑制循環電流並達成虛功共享,PI二次補償則強化電壓與頻率的穩態表現。研究成果有助於孤島微電網穩定運行並提供實務設計依據。

    With the increasing penetration of renewable energy, microgrids have become a crucial solution to enhance the resilience of power systems. However, islanded AC microgrids often encounter issues such as inaccurate reactive power sharing and deviations in voltage and frequency during the parallel operation of multiple inverters, which negatively impact system stability. This study introduces a coordinated control strategy that integrates adaptive virtual impedance and PI compensation to improve the accuracy of reactive power sharing and the regulation of voltage and frequency in steady-state conditions. The study begins by introducing the basic principles of VF control, PQ control, and droop control, followed by modal analysis to investigate the impact of control parameters on system damping ratio and stability. Furthermore, the droop coefficients are adjusted to evaluate their effects on power distribution and oscillation behavior, and an optimized parameter configuration is proposed. The proposed control strategy is validated using DIgSILENT PowerFactory under various scenarios involving load changes and feeder impedance mismatch. Simulation results demonstrate that the adaptive virtual impedance effectively suppresses circulating currents and enhances reactive power sharing, while the secondary PI compensation effectively eliminate voltage and frequency deviations. The outcomes of this study offer useful references for the stable operation and practical control design of islanded microgrids.

    摘要 I Abstract II SUMMARY IV 誌謝 XV 目錄 XVI 圖目錄 XX 表目錄 XXV 第一章 緒論 1 1.1 背景與動機 1 1.2 目的與方法 3 1.3 文獻回顧 3 1.4 Grid-Forming控制法分析 5 1.4.1 控制法優缺點與比較 8 1.5 論文章節概要 9 第二章 分散式架構與控制策略分析 11 2.1 前言 11 2.2 VF控制 12 2.2.1 控制原理與架構說明 13 2.2.2 運作條件與應用特性 14 2.3 PQ 控制 15 2.3.1 控制原理與應用限制 15 2.3.2 控制架構說明 16 2.3.3 瞬時功率計算 17 2.4 垂降控制 19 2.4.1 垂降控制法 20 2.4.2 不同運作模式下之垂降控制應用分析 26 2.5 微電網中基於通訊之協調控制技術 30 2.5.1 集中式控制 30 2.5.2 主從式控制 31 2.5.3 分散式控制 31 2.5.4 小結 32 2.6 模態分析 34 2.6.1 特徵值計算原理 34 2.6.2 特徵值極點圖與阻尼比分析法 35 2.6.3 極點移動對系統動態行為的影響 38 第三章 Droop參數與穩態補償對系統穩定性之影響 41 3.1 Droop參數對系統功率共享以及穩定性的影響 45 3.1.1 各變流器設定相同Droop參數 45 3.1.2 各變流器設定不同Droop參數 46 3.1.3 小結 47 3.2 穩態誤差的來源與影響 48 3.2.1 採用PI控制消除穩態誤差 48 3.3 在相同 Droop 參數設定下PI 控制對系統的影響 50 3.3.1 並聯情境只有Droop Control控制架構 50 3.3.2 Master-Slave控制(僅Master變流器加入PI控制) 51 3.3.3 所有控制架構都有加入PI控制器 53 3.3.4 小結 54 3.4 加入PI控制後,Droop參數變動對系統的影響 56 3.4.1 上下調整大容量變流器的Droop參數對穩定性的影響 56 3.4.2 上下調整小容量變流器的Droop參數對穩定性的影響 65 3.4.3 小結 70 第四章 虛擬阻抗與自適應虛擬阻抗 71 4.1 前言 71 4.2 虛擬阻抗控制理論 71 4.2.1 虛擬阻抗對並聯變流器虛功率分配的影響 71 4.2.2 解決方法:實施虛擬阻抗技術 72 4.2.3 兩台變流器並聯模擬 75 4.2.4 小結 83 4.3 自適應虛擬阻抗控制策略 84 4.3.1 自適應虛擬阻抗方法 85 4.3.2 自適應虛擬阻抗對功率分配的影響 87 4.3.3 小結 98 4.4 變流器之間的循環電流問題分析 99 4.4.1 自適應虛擬阻抗控制對循環電流抑制之效果分析 102 4.4.2 小結 106 第五章 GFM變流器實功與虛功控制回路整合 107 5.1 結合PI控制消除穩態誤差之模擬情境 107 5.1.1 小結 113 5.2 控制回路整合與優化 114 5.2.1 移除垂降控制中Q回路 115 5.2.2 電壓回路中移除 PI 並直接連接積分器 117 5.2.3 直接輸入電壓目標值的控制策略 119 5.2.4 結論 121 第六章 結論與未來展望 123 6.1 結論 123 6.2 未來展望 125 參考文獻 127

    [1] S. Fazal, M. E. Haque, M. T. Arif, and A. Gargoom, "Droop Control Techniques for Grid Forming Inverter," in 2022 IEEE PES 14th Asia-Pacific Power and Energy Engineering Conference (APPEEC), 20-23 Nov. 2022 2022, pp. 1-6, doi: 10.1109/APPEEC53445.2022.10072251.
    [2] Q. Liu and Z. Fu, "Bus Voltage Deviation Automatic Compensation Control Based On Droop Control," in 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), 12-14 Oct. 2018 2018, pp. 24-28, doi: 10.1109/IAEAC.2018.8577667.
    [3] B. Keyvani-Boroujeni, B. Fani, G. Shahgholian, and H. H. Alhelou, "Virtual Impedance-Based Droop Control Scheme to Avoid Power Quality and Stability Problems in VSI-Dominated Microgrids," IEEE Access, vol. 9, pp. 144999-145011, 2021, doi: 10.1109/ACCESS.2021.3122800.
    [4] W. Hao, C. Zheng, Q. Wang, and T. Rui, "Droop Control Method of Inverter Based on Variable Virtual Impedance," in 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), 19-21 June 2019 2019, pp. 1167-1172, doi: 10.1109/ICIEA.2019.8833964.
    [5] J. M. Carrasco et al., "Power-Electronic Systems for the Grid Integration of Renewable Energy Sources: A Survey," IEEE Transactions on Industrial Electronics, vol. 53, no. 4, pp. 1002-1016, 2006, doi: 10.1109/TIE.2006.878356.
    [6] J. Kim, J. M. Guerrero, P. Rodriguez, R. Teodorescu, and K. Nam, "Mode Adaptive Droop Control With Virtual Output Impedances for an Inverter-Based Flexible AC Microgrid," IEEE Transactions on Power Electronics, vol. 26, no. 3, pp. 689-701, 2011, doi: 10.1109/TPEL.2010.2091685.
    [7] A. Mehrizi-Sani and R. Iravani, "Potential-Function Based Control of a Microgrid in Islanded and Grid-Connected Modes," IEEE Transactions on Power Systems, vol. 25, no. 4, pp. 1883-1891, 2010, doi: 10.1109/TPWRS.2010.2045773.
    [8] J. C. Vasquez, J. M. Guerrero, A. Luna, P. Rodriguez, and R. Teodorescu, "Adaptive Droop Control Applied to Voltage-Source Inverters Operating in Grid-Connected and Islanded Modes," IEEE Transactions on Industrial Electronics, vol. 56, no. 10, pp. 4088-4096, 2009, doi: 10.1109/TIE.2009.2027921.
    [9] W. Du et al., "Modeling of Grid-Forming and Grid-Following Inverters for Dynamic Simulation of Large-Scale Distribution Systems," IEEE Transactions on Power Delivery, vol. 36, no. 4, pp. 2035-2045, 2021, doi: 10.1109/TPWRD.2020.3018647.
    [10] D. Pattabiraman, R. H. Lasseter, and T. M. Jahns, "Comparison of Grid Following and Grid Forming Control for a High Inverter Penetration Power System," in 2018 IEEE Power & Energy Society General Meeting (PESGM), 5-10 Aug. 2018 2018, pp. 1-5, doi: 10.1109/PESGM.2018.8586162.
    [11] R. Rosso, X. Wang, M. Liserre, X. Lu, and S. Engelken, "Grid-Forming Converters: Control Approaches, Grid-Synchronization, and Future Trends—A Review," IEEE Open Journal of Industry Applications, vol. 2, pp. 93-109, 2021, doi: 10.1109/OJIA.2021.3074028.
    [12] O. Ajala, N. Baeckeland, B. Johnson, S. Dhople, and A. Domínguez-García, "Model Reduction and Dynamic Aggregation of Grid-Forming Inverter Networks," IEEE Transactions on Power Systems, vol. 38, no. 6, pp. 5475-5490, 2023, doi: 10.1109/TPWRS.2022.3229970.
    [13] J. Rocabert, A. Luna, F. Blaabjerg, and P. Rodríguez, "Control of Power Converters in AC Microgrids," IEEE Transactions on Power Electronics, vol. 27, no. 11, pp. 4734-4749, 2012, doi: 10.1109/TPEL.2012.2199334.
    [14] J. M. Guerrero, V. Luis Garcia de, J. Matas, M. Castilla, and J. Miret, "Output impedance design of parallel-connected UPS inverters with wireless load-sharing control," IEEE Transactions on Industrial Electronics, vol. 52, no. 4, pp. 1126-1135, 2005, doi: 10.1109/TIE.2005.851634.
    [15] B. John, A. Ghosh, and F. Zare, "Load Sharing in Medium Voltage Islanded Microgrids With Advanced Angle Droop Control," IEEE Transactions on Smart Grid, vol. 9, no. 6, pp. 6461-6469, 2018, doi: 10.1109/TSG.2017.2713452.
    [16] J. C. Vasquez, R. A. Mastromauro, J. M. Guerrero, and M. Liserre, "Voltage Support Provided by a Droop-Controlled Multifunctional Inverter," IEEE Transactions on Industrial Electronics, vol. 56, no. 11, pp. 4510-4519, 2009, doi: 10.1109/TIE.2009.2015357.
    [17] W. Yao, M. Chen, J. Matas, J. M. Guerrero, and Z. M. Qian, "Design and Analysis of the Droop Control Method for Parallel Inverters Considering the Impact of the Complex Impedance on the Power Sharing," IEEE Transactions on Industrial Electronics, vol. 58, no. 2, pp. 576-588, 2011, doi: 10.1109/TIE.2010.2046001.
    [18] J. He and Y. W. Li, "Analysis, Design, and Implementation of Virtual Impedance for Power Electronics Interfaced Distributed Generation," IEEE Transactions on Industry Applications, vol. 47, no. 6, pp. 2525-2538, 2011, doi: 10.1109/TIA.2011.2168592.
    [19] J. He, Y. W. Li, J. M. Guerrero, F. Blaabjerg, and J. C. Vasquez, "An Islanding Microgrid Power Sharing Approach Using Enhanced Virtual Impedance Control Scheme," IEEE Transactions on Power Electronics, vol. 28, no. 11, pp. 5272-5282, 2013, doi: 10.1109/TPEL.2013.2243757.
    [20] B. Liu, Z. Liu, and J. Liu, "A Noninvasive Feeder Impedance Estimation Method for Parallel Inverters in Microgrid Based on Load Harmonic Current," IEEE Transactions on Power Electronics, vol. 36, no. 7, pp. 7354-7359, 2021, doi: 10.1109/TPEL.2020.3042700.
    [21] T. V. Hoang and H. H. Lee, "An Adaptive Virtual Impedance Control Scheme to Eliminate the Reactive-Power-Sharing Errors in an Islanding Meshed Microgrid," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, no. 2, pp. 966-976, 2018, doi: 10.1109/JESTPE.2017.2760631.
    [22] X. Meng, J. Liu, and Z. Liu, "A Generalized Droop Control for Grid-Supporting Inverter Based on Comparison Between Traditional Droop Control and Virtual Synchronous Generator Control," IEEE Transactions on Power Electronics, vol. 34, no. 6, pp. 5416-5438, 2019, doi: 10.1109/TPEL.2018.2868722.
    [23] M. Chen, D. Zhou, and F. Blaabjerg, "Enhanced Transient Angle Stability Control of Grid-Forming Converter Based on Virtual Synchronous Generator," IEEE Transactions on Industrial Electronics, vol. 69, no. 9, pp. 9133-9144, 2022, doi: 10.1109/TIE.2021.3114723.
    [24] A. H. Jafariazad, S. A. Taher, Z. D. Arani, M. H. Karimi, and J. M. Guerrero, "Adaptive Supplementary Control of VSG Based on Virtual Impedance for Current Limiting in Grid-Connected and Islanded Microgrids," IEEE Transactions on Smart Grid, vol. 15, no. 1, pp. 89-98, 2024, doi: 10.1109/TSG.2023.3274628.
    [25] T. T. Tran et al., "Enhancing Performance of Andronov-Hopf Oscillator-Based Grid-Forming Converters in Microgrids With Non-Invasive Online Impedance Estimation," IEEE Transactions on Smart Grid, vol. 14, no. 6, pp. 4479-4493, 2023, doi: 10.1109/TSG.2023.3260721.
    [26] S. Niu, W. Wang, G. Zhang, and A. Chen, "A Sliding Mode Control-Based Pre-Synchronization Strategy for Virtual Oscillator Controlled Grid-forming Inverters," in 2024 IEEE 10th International Power Electronics and Motion Control Conference (IPEMC2024-ECCE Asia), 17-20 May 2024 2024, pp. 1860-1864, doi: 10.1109/IPEMC-ECCEAsia60879.2024.10567933.
    [27] 張皓博, "電網成形換流器併網與離網操作策略研究," 碩士, 電機工程學系, 國立成功大學, 台南市, 2024. [Online]. Available: https://hdl.handle.net/11296/yfpg96
    [28] U. B. Tayab, M. A. B. Roslan, L. J. Hwai, and M. Kashif, "A review of droop control techniques for microgrid," Renewable and Sustainable Energy Reviews, vol. 76, pp. 717-727, 2017/09/01/ 2017, doi: https://doi.org/10.1016/j.rser.2017.03.028.
    [29] Y. Wu, G. Verbič, and A. S. Ahmadyar, "Modelling of Grid-forming Inverters for Power System Applications in DIgSILENT PowerFactory," in 2021 IEEE PES Innovative Smart Grid Technologies - Asia (ISGT Asia), 5-8 Dec. 2021 2021, pp. 1-5, doi: 10.1109/ISGTAsia49270.2021.9715715.
    [30] H. Han, X. Hou, J. Yang, J. Wu, M. Su, and J. M. Guerrero, "Review of Power Sharing Control Strategies for Islanding Operation of AC Microgrids," IEEE Transactions on Smart Grid, vol. 7, no. 1, pp. 200-215, 2016, doi: 10.1109/TSG.2015.2434849.
    [31] A. G. Tsikalakis and N. D. Hatziargyriou, "Centralized Control for Optimizing Microgrids Operation," IEEE Transactions on Energy Conversion, vol. 23, no. 1, pp. 241-248, 2008, doi: 10.1109/TEC.2007.914686.
    [32] M. Yazdanian and A. Mehrizi-Sani, "Distributed Control Techniques in Microgrids," IEEE Transactions on Smart Grid, vol. 5, no. 6, pp. 2901-2909, 2014, doi: 10.1109/TSG.2014.2337838.
    [33] R. Azizipanah-Abarghooee, M. Malekpour, M. S. Ayaz, M. Karimi, and V. Terzija, "Small Signal Based Frequency Response Analysis for Power Systems," in 2018 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), 21-25 Oct. 2018 2018, pp. 1-6, doi: 10.1109/ISGTEurope.2018.8571556.
    [34] A. N. Widiastuti, S. P. Hadi, and Sarjiya, "Impact Analysis of Location and Penetration Level of DFIG on Small Signal Stability of Power System," in 2019 4th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE), 20-21 Nov. 2019 2019, pp. 20-25, doi: 10.1109/ICITISEE48480.2019.9003809.
    [35] M. Amin and M. Molinas, "Small-Signal Stability Assessment of Power Electronics Based Power Systems: A Discussion of Impedance- and Eigenvalue-Based Methods," IEEE Transactions on Industry Applications, vol. 53, no. 5, pp. 5014-5030, 2017, doi: 10.1109/TIA.2017.2712692.
    [36] N. S. Nise, Control Systems Engineering 8/e Asia Edition, Eighth Edition ed., 2019.
    [37] Cigré Task Force C6.04. Benchmark systems for network integration of renewable and distributed energy resources: CIGRE, 2014.
    [38] J. Lu, Y. Zhang, X. Qian, J. Long, and Z. Zhao, "A novel virtual impedance method for droop controlled parallel UPS inverters with wireless control," in 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), 31 Aug.-3 Sept. 2014 2014, pp. 1-5, doi: 10.1109/ITEC-AP.2014.6940808.
    [39] 江智弘, "兩並聯整流器間循環電流之抑制研究," 碩士, 電機工程學系碩博士班, 國立成功大學, 台南市, 2013. [Online]. Available: https://hdl.handle.net/11296/5mgscg
    [40] Z. Tao, B. Hu, M. Ye, and M. Ding, "Interference Suppression of Circulating Current Fluctuation Based on Equivalent Input Disturbance in Parallel Inverters," in 2023 IEEE 6th International Conference on Industrial Cyber-Physical Systems (ICPS), 8-11 May 2023 2023, pp. 1-6, doi: 10.1109/ICPS58381.2023.10127996.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE