簡易檢索 / 詳目顯示

研究生: 古鈞州
GU, Jyun-Jhou
論文名稱: 混合激擾式噴霧造粒技術應用於醫藥微球製程之研究
Production of Medical Microspheres with Spraying Processes under Hybrid Excitation
指導教授: 王覺寬
Wang, Muh-Rong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 76
中文關鍵詞: 混合式激擾式噴嘴栓塞微球噴霧造粒醫療栓塞靜電
外文關鍵詞: Hybrid excitation nozzle, Embolic microspheres, Particle generation, Medical embolization, Electrostatic
相關次數: 點閱:59下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 栓塞治療術為一種微創手術,將栓塞物藉導管經由肝動脈引導至腫瘤位置,並將供應腫瘤血液的肝動脈以栓塞物如含化療藥物之栓塞微球等注入。本研究探討混合激擾式噴霧造粒技術,目標為生產粒徑範圍介於150 μm ~ 350 μm的微球,以因應醫療用栓塞劑之需求。本研究之混合激擾式噴霧造粒產生裝置,係利用注射幫浦將工作流體注入噴嘴內,在噴嘴口下方裝高電壓的靜電環,先將液束直徑縮小再以正弦波之外部激擾,使液柱在擾動下形成單粒徑液滴。本研究所採用之工作流體包含聚己內酯於二氯甲烷溶液、醫療用栓塞劑配方及硬脂酸等材料。首先以聚己內酯於二氯甲烷溶液做產生不同噴柱模態測試及找出錐形噴柱的範圍,在此範圍探討外部激擾對於形成液滴的影響及液滴粒徑的差異性研究,研究結果當末施加外部激擾源時,粒徑因為高壓靜電的關係有縮小,但部分液滴在落下的過程中沒有受到擾動的影響,造成粒徑不均一,此時粒徑與液束直徑的比值趨近於2,且粒徑標準差也明顯較大;若施加外部激擾源,在高壓靜電環的驅動下液柱直徑變小,並且因為受到外部擾動的關係,使液滴間的距離固定,形成單粒徑的液滴,故可以產出單粒徑的微球。最後將其運用於硬酯酸及醫療用栓塞劑之噴霧造粒實驗,並分析造粒後之微球粒徑分布。實驗結果顯示,工作流體在激擾頻率1.0 kHz ~ 10kHz區間內,皆可產生單粒徑液滴,其粒徑隨頻率增加而下降,在此區間外則為多粒徑液滴產生區。工作流體之表面張力在38.0 ×10-3 N/m ~ 67.1 ×10-3 N/m間,對於液滴粒徑影響亦不顯著。主要影響液滴粒徑之參數為激擾頻率、液柱速度及是否在錐形模態範圍。

    Embolization is a minimally invasive surgical technique, a catheter guided by the embolic agents to the tumor site via the hepatic artery and hepatic arterial blood supply to the tumor embolus as containing chemotherapy drugs, such as embolic microsphere injection. This study investigated the mono-dispersed particle mixing excitation generation technique, the production of microsphere size range between 150 μm ~ 350 μm, and to cope with the demand for medical use embolic agents.
    Mixed Excitation spray granulation generating device of this study, the Department will use the syringe pump working fluid injected to the nozzle, beneath the nozzle orifice installed high voltage electrostatic ring, the first beam diameter was reduced again to an external sinusoidal wave of excitation , so that the liquid column to form a mono-dispersed particle . The materials in this study contains a polycaprolactone in dichloromethane solution, embolic medical formulations, and stearic acid. The first for polycaprolactone in dichloromethane solution do produce different spray column modal test and find out the scope of the conical spray column, in this range to explore the impact of disturbance for the formation of droplets and droplet size differences. When results applied to the external excitation disturbance, because the relationship between high-voltage electrostatic particle size has reduced, but some of the droplets in the process of falling was not affected disturbance, resulting in uneven particle size, then the ratio of the diameter of the beam diameter with liquid close to 2, and a particle size standard deviation is significantly greater; if an external excitation is applied to interference, the diameter of the liquid column, driven by high voltage electrostatic ring becomes small, and because the relationship between the external disturbance, so that the distance between the droplets is fixed, droplets to form mono-dispersed particle, it can produce mono-dispersed particle size of the microspheres. stearic acid Particle generation and medical experiments of embolic agents, and analyze microsphere size distribution after Particle generation. Experimental results show that the working fluid excitation frequencies 1.0 kHz ~ 10 kHz, can produce mono-dispersed droplet diameter, the particle size decreases with increasing frequency in this range was more than the outer diameter of the droplet generation region. The surface tension of the working fluid between 38.0 ×10-3 N/m ~ 67.1 ×10-3 N/m nor a significant impact for the droplet size. The main parameters affecting the droplet size for excitation frequency, speed and whether the scope of the liquid column in the cone modle.

    摘要......................................................I ABSTRACT.................................................III 誌謝.....................................................X 目錄.....................................................XI 表目錄...................................................XIII 圖目錄...................................................XIV 符號說明.................................................XVII 第一章 緒論.................................................1 1-1 簡介..................................................1 1-2 文獻回顧...............................................3 1-2-1 液柱碎化過程...........................................3 1-2-2 連續式單液滴產生機制....................................5 1-2-3 連續式單粒徑液滴噴嘴....................................8 1-2-4 靜電造粒設備及產生cone-jet機制..........................11 1-3 研究動機與目的........................................15 1-4肝動脈腫瘤栓塞術.........................................16 第二章 實驗設備與儀器及實驗方法與步驟...........................18 2-1實驗設備................................................18 2-1-1混合式單粒徑產生噴嘴....................................20 2-1-2外部激擾..............................................23 2-1-3加熱溫度控制...........................................25 2-1-4供應液體..............................................26 2-1-5粒徑液滴影像...........................................27 2-1-6粒徑分析..............................................28 2-2實驗儀器................................................29 2-2-1表面張力儀............................................29 2-2-2電子天秤..............................................30 2-2-3黏度測試儀............................................31 2-2-4導電度儀..............................................31 2-3實驗方法與步驟...........................................32 2-3-1實驗條件..............................................32 2-3-2數據之取樣與分析........................................34 2-3-3參數之無因次分析........................................34 2-3-4實驗步驟..............................................36 第三章 實驗結果與討論........................................37 3-1聚己內酯於二氯甲烷混合溶液的噴霧造粒實驗......................37 3-1-1產生CONE-JET MODE 的區間..............................38 3-1-2在不同電壓強度下觀察液柱直徑隨流體流率產生的變化..............45 3-1-3無施加外部激擾源在相同電壓及改變流率下的粒徑差異性............46 3-1-4施加外部激擾在相同電壓及改變流率下的粒徑差異性...............52 3-1-5比較有無施加外部激擾在相同電壓及改變流率下粒徑變化............60 3-2硬酯酸與醫療用栓塞微球應用混合式激擾噴霧造粒實驗................67 3-2-1硬脂酸微球噴霧造粒實驗...................................67 3-2-2醫療用栓塞微球噴霧造粒實驗...............................70 第四章 結論與未來工作........................................72 4-1結論...................................................72 4-2未來工作................................................73 參考文獻...................................................74

    [1]Lefebvre, A. H., ”Atomization and Spary,” Hemisphere Publishing Corporation, New York, pp.1-25, 1989.
    [2]H. Lefebvre, “Gas Turbine Combustion,”, Hemisphere Publishing Corporation, New York, Chapter10,1983.
    [3]R. A. Castleman Jr., “The Mechanism of the Atomization of Liquids,” Burean of Standards Journal of Research, Vol.6, pp.369-376, 1930.
    [4]N. Dombrowski and W. R. Johns, ”The Aerodynamic Instability and Disintegration of Viscous Liquid Sheets,” Chem. Eng. Sci., Vol.18, pp.203-214, 1963.
    [5]R. P. Fraser, “Liquid Fuel Atomization,” Sixth Symposium (International) on Combustion, Rein-hold, New York, pp.687-701, 1957.
    [6]Dabora, E. K., “Production of Mondisperse Sprays,” The Review of Scientific Instruments,Vol. 38, pp. 502-506, 1967.
    [7]Richard G. Sweet, “High Frequency Recording with Elecrostatically Deflected Ink Jet,” The Review of Scientific Instruments, Vol.36, pp.131-136, 1965.
    [8]Orme, M. and Muntz, E. P., “New Technique for Producing Highly Uniform Droplet Stream over an Extended Range of Disturbance Wavenumbers,” Rev. Sci. Instrum., Vol. 58, No. 2, pp. 279-284, 1987.
    [9]G. Brenn, T. Helpio and F. Dirst, “A new apparatus for the production of monodisperse sprays at high flow rates,” Chemical Engineering Science, Vol.52, No.2., pp237-244, 1997.
    [10]Connon, C. S. and Dunn-Rankin, D., “Droplet Stream Dynamics at High Ambient Pressure,” Atomization and Spray, Vol. 6, pp. 485-497, 1996.
    [11]Dabora, E. K., “Production of Mondisperse Sprays,” The Review of Scientific Instruments,Vol. 38, pp. 502-506, 1967。
    [12]G. Brenn, T. Helpio and F. Dirst, “A new apparatus for the producton of monodisperse sprays at high flow rates”, Chemical Engineering Science, vol. 52 No
    [13]Armster, S. Q., Delplanque, J. P., Lai, W. H., and Lavernia, E. J., “Monosize Droplet Deposition as a Means to Investigate Droplet Behavior during Spray Deposition,” Metallurgical and Materials Transactions B, Vol. 31B, pp. 1333-1344, 2000.Marco, M., Mauro, M., & Fabiana, S., 1996, “Rheological Behaviour of Aqueous. Dispersions of Algel Sodium Alginates,”Journal of Food Engineering, Vol. 28, pp.283.
    [14]Sheu, T. Y., and Rosenberg, M., Microencapsulation by spray-drying ethylcaprylate whey protein and carbohydrate wall systems. J. Food Sci., Technol., 60, 98-103, 1995.
    [15]Sheu, T. Y., and Rosenberg, M., Microstructure of microcapsules consisting of whey proteins and carbohydrates, J. Food Sci., Technol., 63, 491-494, 1995.
    [16]R. Pedroza-Islas, E. J. Vernon-Carter, C. Dura’n-Domi’nguez, S. Trejo-Marti’nez, Using biopolymer blends for shrimp feedstuff microencapsulation - I. Microcapsule particle size, morphology and microstructure, Food Research International, Vol. 32, pp. 367-374, 1999.
    [17]Wayne R. Gombotz and Siow Fong Wee, Protein release from alginate matrices, Advanced Drug Delivery Reviews, Vol. 31, pp. 267-285, 1998.
    [18]Imamura Y, Sano H. International comparisons of cumulative risk of liver cancer, from Cancer Incidence in Five Continents Vol. VIII. Jpn J Clin Oncol 2006; 364:259-60.
    [19]Lang HC, Wu JC, Yen SH, Lan CF, Wu SL. The lifetime cost of hepatocellular carcinoma : a claims data analysis from a medical centre in Taiwan. Appl Health Econ Health Policy 2008; 61:55-65.
    [20]Sturm JW, Keese MA, Bonninghoff RG, Wustner M, Post S. Locally ablative therapies of hepatocellular carcinoma. Onkologie 2001; 24 : 35-45.
    [21]Chung JW. Transcatheter arterial chemoembolization of hepatocellular carcinoma. Hepatogastroenterology 1998; 45 :1236-1241.

    下載圖示 校內:2019-08-25公開
    校外:2019-08-25公開
    QR CODE