| 研究生: |
裘愉豪 Chiu, Yu-Hao |
|---|---|
| 論文名稱: |
使用晶片上校正實現每級1.5位元之低功率逐次逼近類比數位轉換器 An Implementation of 1.5 Bits/Stage Low Power Successive Approximation Register Analog to Digital Converter by Using on Chip Calibration |
| 指導教授: |
王駿發
Wang, Jhing-Fa |
| 共同指導教授: |
鄭光偉
Cheng, Kuang-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 類比數位轉換器 、每級1.5位元 、低功率 、語音系統 、晶片設計 |
| 外文關鍵詞: | Analog-to-Digital Converter, 1.5 bits/stage, low-power, audio system, chip design |
| 相關次數: | 點閱:122 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在語音系統中,類比數位轉換器(analog-to-digital, ADC)扮演著重要的角色。而逐漸逼近式類比數位轉換器(successive approximate register ADCs, SAR ADCs)是一種低成本、低功耗、中等速率類型的類比數位轉換器,在語音系統上較受歡迎。
本篇論文提出利用晶片上校正,並利用時域數位轉換器(time-to-digital converter)來實現每級1.5位元的晶片設計方法,使其在隨機電壓輸入時,有25%的機率其電容陣列不會轉換。因此轉換功率能夠降低。在單調轉換(monotonic switching)的配合下,可以有效降低功率消耗。另外我們還搭配冗位(redundancy bit)使比較錯誤的容錯率上升,在加上非同步時脈(asynchronous clock)的技術,令我們的系統時脈降低為原來的十五倍,以達到一個較低功耗的類比數位轉換器。
實現方面,我們利用國家晶片系統設計中心(Chip Implementation Center, CIC)與台灣積體電路公司(TSMC)所提供的90奈米製程完成本晶片實作下線。晶片面積為0.29*0.28 mm2,消耗功率為1.215μW,工作頻率為100kHz,ENOB為11.16 bit。
Analog-to-digital converters (ADCs) play an important role in audio system. Successive approximate register ADC (SAR ADC) is a low cost, low power consumption, medium speed ADC which is widely used in audio system.
This study proposed on chip calibration to implement 1.5 bits/stage chip design with time-to-digital converter (TDC). There will be a 25% chance that the capacitor array will not switch with random input signals. Therefore, the switching energy can be lower. By combining the monotonic switching, it will efficiently reduce the power consumption. Additionally, we add the asynchronous clock technique for lower our system clock 15 times.
For implementation, we have been tape-out in TSMC’s 90nm process via Chip Implementation Center (CIC). The chip area is 0.28*0.29 mm2, the power dissipation is 1.215uW, the operation frequency is 100 kHz and ENOB is 11.16.
[1] C. Zhang, and H. Wang, "Reduction of Parasitic Capacitance Impact in Low-Power SAR ADC," IEEE Transactions on Instrumentation and Measurement, vol.61, no.3, pp.587-594, March 2012.
[2] T. Ogawa, et. al. , "SAR ADC algorithm with redundancy," in IEEE Asia Pacific Conference Circuits and Systems, Dec 2008, pp.268-271.
[3] Harpe, et. al. , "A 26 W 8 bit 10 MS/s Asynchronous SAR ADC for Low Energy Radios," IEEE J. Solid-State Circuits, vol.46, no.7, pp.1585-1595, July 2011.
[4] L. Deng, C. et. al. , "A 12-bit 200KS/s SAR ADC with a mixed switching scheme and integer-based split capacitor array," in IEEE New Circuits and Systems Conference (NEWCAS), June 2013, pp.1-4, 16-19.
[5] C. C. Liu; S. J. Chang, G. Y. Huang, and Y. Z. Lin, "A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure," IEEE J. Solid-State Circuits, vol.45, no.4, pp.731-740, April 2010.
[6] M. Ahmadi, and M. Namgoong, "Comparator Power Reduction in Low-Frequency SAR ADC Using Optimized Vote Allocation," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, no.99, pp.1-1, 2014.
[7] G. Y. Huang, S. J. Chang, C. C. Liu, and Y. Z. Lin, "A 1-µW 10-bit 200-kS/s SAR ADC With a Bypass Window for Biomedical Applications," IEEE J. Solid-State Circuits, vol.47, no.11, pp.2783-2795, Nov. 2012.
[8] J. Guerber, H. Venkatram, Gande, M. Waters, and U. K. Moon, "A 10-b Ternary SAR ADC With Quantization Time Information Utilization," IEEE J. Solid-State Circuits, vol.47, no.11, pp.2604-2613, Nov. 2012.
[9] R. J. Baker,”CMOS Circuit Design, Layout, and Simulation”, Wiley-Inter science, 2nd edition, 2004.
[10] R.Van de Plassche,”CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters”, Kluwer Academic, 1994.
[11] P. Lowenberg, Mixed-Signal Processing Systems, Linkoping University, 2006.
[12] Maxim, “Demystifying Sigma-Delta ADCs”, Application Note 1870, Jan 31, 2003.
[13] Maxim, “A Simple ADC Comparison Matrix”, Application Note 2094, Jun 02, 2003.
[14] B. Black, “Analog-to-Digital Converter Architectures and Choices for System Design”, Analog Dialogue 33-8, 1999.
[15] Texas Instruments, “Amplifier and Data Converter Guide”, 1Q 2009.
[16] A. V. Oppenheim, R. W. Schafer, and J. R. Buck,”Discrete-Time Signal Processing”, 2nd edition, 1999.
[17] B. P. Ginsburg, and A. P. Chandrakasan, "An energy-efficient charge recycling approach for a SAR converter with capacitive DAC," IEEE International Symposium Circuits and Systems (ISCAS), pp.184-187 Vol. 1, May 2005.
[18] B. P. Ginsburg, and A. P. Chandrakasan, "500-MS/s 5-bit ADC in 65-nm CMOS With Split Capacitor Array DAC," IEEE J. Solid-State Circuits, vol.42, no.4, pp.739-747, April 2007.
[19] Y. K. Chang, C. S. Wang, and C. K. Wang, "A 8-bit 500-KS/s low power SAR ADC for bio-medical applications," in IEEE Asia Solid-State Circuits Conference (ASSCC), Nov. 2007, pp.228,231, 12-14.
[20] V. Hariprasath, J. Guerber, S. H. Lee, and U. K. Moon, "Merged capacitor switching based SAR ADC with highest switching energy-efficiency," Electronics Letters , vol.46, no.9, April 2010, pp.620-621.
[21] Y. Zhu, et. al. , "A 10-bit 100-MS/s Reference-Free SAR ADC in 90 nm CMOS," IEEE J. Solid-State Circuits, vol.45, no.6, pp.1111-1121, June 2010.
[22] D. Upadhyay, and S. Nair1, “Design Of A Low Power And High Speed 1.5 Bit Stage For Pipeline ADC”, IEEE Transactions on International Journal of Computational Engineering Research, vol.03, no.7, July 2013.
[23] D. Zhang, A. Bhide, and A. Alvandpour, "A 53-nW 9.1-ENOB 1-kS/s SAR ADC in 0.13- um CMOS for Medical Implant Devices," IEEE J. Solid-State Circuits, vol.47, no.7, pp.1585-1593, July 2012.
[24] Y. H. Chung, M. H. Wu, and H. S. Li, "A 12-bit 8.47-fJ/Conversion-Step Capacitor-Swapping SAR ADC in 110-nm CMOS," IEEE Transactions on Circuits and Systems I: Regular Papers, no.99, pp.1-9.
[25] J. Jin, Y. Gao, and E. S. Sinencio, "An Energy-Efficient Time-Domain Asynchronous 2 b/Step SAR ADC With a Hybrid R-2R/C-3C DAC Structure," IEEE J. Solid-State Circuits, vol.49, no.6, pp.1383-1396, June 2014.
[26] S. K. Lee, S. J. Park, Y. Suh, H. J. Park, and J. Y. Sim, “A 21 fJ/conversion-step 100 kS/s 10-bit ADC with a low-noise time-domain comparator for low-power sensor interface,” IEEE J. Solid-State Circuits, vol. 46, no. 3, pp. 651–659, Mar. 2011.
[27] L. Deng, et. al. , “A 12-bit 200KS/s SAR ADC with a mixed switching scheme and integer-based split capacitor array,” in IEEE New Circuits and Systems Conference (NEWCAS), June 2013, pp.1-4, 16-19.
[28] H. W. Ting, B. D. Liu, and S. J. Chang, “A Histogram-Based Testing Method for Estimating A/D Converter Performance,” IEEE Transactions on Instrumentation and Measurement, vol. 57, no. 2, pp. 420–426, Feb. 2008.