簡易檢索 / 詳目顯示

研究生: 陳彥嘉
Chen, Yen-Chia
論文名稱: 以溶膠凝膠法製備界面活性劑於氧化鋅表面應用於反式高分子太陽能電池
Surfactant-enriched ZnO surface via sol-gel process for efficient inverted polymer solar cells
指導教授: 溫添進
Wen, Ten‐Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 96
中文關鍵詞: 界面活性劑氧化鋅界面修飾有機高分子太陽能電池
外文關鍵詞: surfactant, interfacial modification, polymer solar cell, ZnO
相關次數: 點閱:54下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以各類型界面活性劑做為溶膠凝膠法製程氧化鋅之添加劑,並將此修飾後的氧化鋅應用於高分子太陽能電池系統。藉由摻雜的方式,在完成製備氧化鋅薄膜的同時,也一併完成界面修飾。
    第一部份主要使用分支型界面活性劑四辛基溴化銨TOAB添加入氧化鋅前驅液中,經證實界面活性劑最後會位於薄膜表面,可以有效降低表面粗糙度,減少表面團聚,界面活性劑上的長碳鏈提供有激高分子更佳的製備環境,且證實其溴離子會與氧化鋅有所鍵結,並有效降低電子能障提升載子傳輸能力,最後應用於有機高分子太陽能電池系統中能有效提高元件表現與穩定性。
    第二部份則主要使用直鏈型界面活性劑溴化十六烷基吡啶CPB添加入氧化鋅中。與TOAB不同的是四個長碳鏈由單長直碳鏈所取代,結果顯示CPB同樣會位於氧化鋅表面,並具有降低表面粗糙度的效果,且可以使表面較TOAB更為疏水,為高分子提供更適合的製備環境。CPB同樣能提高電子萃取能力,提升有效載子,應用於有機高分子太陽能電池中可以將效率由8.08%最高提升至9.55%。

    In this study, we demonstrated that the top surface was enriched by surfactants, tetraoctylammonium bromide (TOAB), cetylpyridinium bromide (CPB), in the sol-gel ZnO, being evidenced by depth profile of bromide. The formation of Zn-Br bonding from XPS results indicated Br occupy the defects on ZnO and release more free electron. The surfactant enriched ZnO surface resulted in the smoother surface and the more hydrophobicity because of the long alkyl chain. Furthermore, work function slightly reduced due to the induced dipole moment between Br- and N+ enhancing electron extraction ability. The tuned properties benefit to the power conversion efficiency (PCE) of bulk-heterojunction polymer solar cells (PSCs) by spin coating the organic active layer on the surfactant enriched ZnO surface. Based on the surfactant enriched sol-gel processed ZnO films, inverted PSCs showed the highest PCE of 9.33%, and 9.55% for the TOAB and CPB case, respectively, in comparison to the pristine ZnO films (8.08% PCE). Here, a one-step process was capable of ZnO fabrication while tuning surface properties by different surfactants, demonstrating great potential for efficient organic photovoltaics.

    摘要 I Extended Abstract II 誌謝 XI 目錄 XIII 圖目錄 XVIII 表目錄 XXII 符號與縮寫 XXIII 符號 XXIII 縮寫 XXIV 第一章 緒論 1 1-1. 前言 1 1-2. 有機太陽能電池簡介 4 1-2-1. 有機太陽能之光電轉換原理 4 1-2-2. 有機太陽能電池材料之發展 9 1-3. 陰極修飾層簡介 14 1-3-1. 金屬氧化物做為電子萃取層 14 1-3-2. 溶液製程氧化鋅簡介 15 1-4. 氧化鋅之界面修飾簡介 17 1-4-1. 共軛聚電解質 (Conjugated polyelectrolyte, CPE) 17 1-4-2. 絕緣體高分子 (Insulating polymer) 18 1-4-3. 有機小分子 19 1-4-4. 電漿 (Plasma) 22 1-4-5. 摻雜 (Doping) 23 1-5. 研究動機 27 第二章 摻雜分支型界面活性劑於氧化鋅做為陰極界面層應用於反式高分子太陽能電池 29 2-1. 前言 29 2-2. 實驗部份 30 2-2-1. 藥品與材料來源 30 2-2-2. 元件組裝步驟 31 2-2-3. 元件特性之量測 34 2-2-4. 掃描式電子顯微鏡量測 34 2-2-5. 原子力顯微鏡之量測 35 2-2-6. 影像式接觸角量測儀之量測 35 2-2-7. X光與紫外光光電子能譜之分析 35 2-2-8. 化學分析電子光譜儀 (ESCA)之縱深分析 36 2-2-9. X光薄膜繞射儀之分析 36 2-2-10. 表面電位顯微鏡之量測 36 2-2-11. 載子萃取能力之量測 37 2-2-12. 外部量子效率(External Quantum Efficiency, EQE) 37 2-3. 結果與討論 38 2-3-1. 分支型界面活性劑TOAB對於表面性質的影響 38 2-3-2. X光薄膜繞射儀之分析 41 2-3-3. X光光電子能譜對於氧化鋅薄膜之分析 42 2-3-4. 化學分析電子光譜儀 (ESCA)之縱深分析 46 2-3-5. TOAB修飾之氧化鋅電子萃取能力之分析 47 2-3-6. 添加TOAB對於高分子太陽能電池元件表現影響 50 2-3-7. 側鏈基之長碳鏈對於元件表現的影響 53 2-3-8. TOAB對於元件穩定性的影響 55 第三章 摻雜直鏈型界面活性劑於氧化鋅做為陰極界面層應用於反式高分子太陽能電池 57 3-1. 前言 57 3-2. 實驗部份 58 3-2-1. 藥品與材料來源 58 3-2-2. 元件組裝步驟 59 3-2-3. 元件特性之量測 62 3-2-4. 掃描式電子顯微鏡量測 62 3-2-5. 原子力顯微鏡之量測 63 3-2-6. 影像式接觸角量測儀之量測 63 3-2-7. X光與紫外光光電子能譜之分析 63 3-2-8. 化學分析電子光譜儀 (ESCA)之縱深分析 64 3-2-9. X光薄膜繞射儀之分析 64 3-2-10. 表面電位顯微鏡之量測 64 3-2-11. 載子萃取能力之量測 65 3-2-12. 外部量子效率(External Quantum Efficiency, EQE) 65 3-3. 結果與討論 66 3-3-1. 直鏈型界面活性劑CPB對於表面性質的影響 66 3-3-2. X光薄膜繞射儀之分析 69 3-3-3. X光光電子能譜對於氧化鋅薄膜之分析 70 3-3-4. 化學分析電子光譜儀 (ESCA)之縱深分析 74 3-3-5. CPB修飾之氧化鋅電子萃取能力之分析 75 3-3-6. 添加CPB對於高分子太陽能電池元件表現影響 78 3-3-7. 側鏈基之單長碳鏈對於元件表現的影響 81 3-3-8. CPB對於元件穩定性的影響 83 第四章 摻雜界面活性劑於氧化鋅之機制探討 85 4-1. 溶膠凝膠法氧化鋅製程與挑戰 85 4-2. 摻雜界面活性劑於溶膠凝膠法製程氧化鋅機制 87 4-2-1. 界面活性劑對於氧化鋅之影響 87 4-2-2. 摻雜界面活性劑於溶膠凝膠法氧化鋅之機制 88 第五章 總結與建議 90 參考文獻 92

    1. NREL chart, https://www.nrel.gov/pv/assets/images/efficiency-chart.png (accessed 04/13, 2018).
    2. D. Kearns and M. Calvin, Journal of Chemical Physics, 1958, 29, 950-951.
    3. C. W. Tang, Applied Physics Letters, 1986, 48, 183-185.
    4. N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, Science, 1992, 258, 1474-1476.
    5. G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger, Science, 1995, 270, 1789-1791.
    6. S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz and J. C. Hummelen, Applied Physics Letters, 2001, 78, 841-843.
    7. F. Padinger, R. S. Rittberger and N. S. Sariciftci, Advanced Functional Materials, 2003, 13, 85-88.
    8. Z. Q. Liang, Q. F. Zhang, O. Wiranwetchayan, J. T. Xi, Z. Yang, K. Park, C. D. Li and G. Z. Cao, Advanced Functional Materials, 2012, 22, 2194-2201.
    9. S. Q. Zhang, L. Ye and J. H. Hou, Advanced Energy Materials, 2016, 6, 1502529.
    10. M. P. de Jong, L. J. van Ijzendoorn and M. J. A. de Voigt, Applied Physics Letters, 2000, 77, 2255-2257.
    11. G. Greczynski, T. Kugler, M. Keil, W. Osikowicz, M. Fahlman and W. R. Salaneck, Journal of Electron Spectroscopy and Related Phenomena, 2001, 121, 1-17.
    12. K. W. Wong, H. L. Yip, Y. Luo, K. Y. Wong, W. M. Lau, K. H. Low, H. F. Chow, Z. Q. Gao, W. L. Yeung and C. C. Chang, Applied Physics Letters, 2002, 80, 2788-2790.
    13. F. C. Krebs and K. Norrman, Progress in Photovoltaics, 2007, 15, 697-712.
    14. M. Y. Song, K. J. Kim and D. Y. Kim, Solar Energy Materials and Solar Cells, 2005, 85, 31-39.
    15. A. Watanabe and A. Kasuya, Thin Solid Films, 2005, 483, 358-366.
    16. M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis and D. S. Ginley, Applied Physics Letters, 2006, 89, 143517.
    17. H. You, Y. F. Dai, Z. Q. Zhang and D. G. Ma, Journal of Applied Physics, 2007, 101, 026105.
    18. C. H. Cheung, W. J. Song and S. K. So, Organic Electronics, 2010, 11, 89-94.
    19. C. W. Chen, Y. J. Lu, C. C. Wu, E. H. E. Wu, C. W. Chu and Y. Yang, Applied Physics Letters, 2005, 87, 241121.
    20. J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. L. Ma, X. Gong and A. J. Heeger, Advanced Materials, 2006, 18, 572.
    21. K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho and A. J. Heeger, Advanced Materials, 2007, 19, 2445.
    22. Y. C. Zhou, H.; Potscavage, J.W.J.; Fuentes-Hernandez, C.; Kim, S.-J.; Kippelen, B, Journal of Materials Chemistry, 2010, 20, 6189.
    23. W. J. E. Beek, M. M. Wienk and R. A. J. Janssen, Advanced Materials, 2004, 16, 1009.
    24. J. Gilot, I. Barbu, M. M. Wienk and R. A. J. Janssen, Applied Physics Letters, 2007, 91, 113520.
    25. J. Liu, S. Y. Shao, B. Meng, G. Fang, Z. Y. Xie, L. X. Wang and X. L. Li, Applied Physics Letters, 2012, 100, 213906.
    26. C. Y. Chang, K. T. Lee, W. K. Huang, H. Y. Siao and Y. C. Chang, Chemistry of Materials, 2015, 27, 5122-5130.
    27. Y. Vaynzof, D. Kabra, L. H. Zhao, P. K. H. Ho, A. T. S. Wee and R. H. Friend, Applied Physics Letters, 2010, 97, 033309.
    28. A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao and D. L. Kwong, Applied Physics Letters, 2008, 93, 221107.
    29. Y. M. Sun, J. H. Seo, C. J. Takacs, J. Seifter and A. J. Heeger, Advanced Materials, 2011, 23, 1679.
    30. M. N. Kamalasanan and S. Chandra, Thin Solid Films, 1996, 288, 112-115.
    31. L. K. Jagadamma, M. Abdelsamie, A. El Labban, E. Aresu, G. O. N. Ndjawa, D. H. Anjum, D. Cha, P. M. Beaujuge and A. Amassian, Journal of Materials Chemistry A, 2014, 2, 13321-13331.
    32. S. K. Hau, H. L. Yip, J. Y. Zou and A. K. Y. Jen, Organic Electronics, 2009, 10, 1401-1407.
    33. S. K. Hau, H. L. Yip and A. K. Y. Jen, Polymer Reviews, 2010, 50, 474-510.
    34. D. Y. Liu and T. L. Kelly, Nature Photonics, 2014, 8, 133-138.
    35. W. J. Qin, X. R. Xu, D. Y. Liu, C. Y. Ma, L. Y. Yang, S. G. Yin, F. L. Zhang and J. Wei, Journal of Renewable and Sustainable Energy, 2013, 5, 053106.
    36. F. C. Krebs, Y. Thomann, R. Thomann and J. W. Andreasen, Nanotechnology, 2008, 19.
    37. C. E. Small, S. Chen, J. Subbiah, C. M. Amb, S. W. Tsang, T. H. Lai, J. R. Reynolds and F. So, Nature Photonics, 2012, 6, 115-120.
    38. R. Steim, S. A. Choulis, P. Schilinsky and C. J. Brabec, Applied Physics Letters, 2008, 92, 093303.
    39. J. H. Seo, A. Gutacker, Y. M. Sun, H. B. Wu, F. Huang, Y. Cao, U. Scherf, A. J. Heeger and G. C. Bazan, Journal of the American Chemical Society, 2011, 133, 8416-8419.
    40. T. B. Yang, M. Wang, C. H. Duan, X. W. Hu, L. Huang, J. B. Peng, F. Huang and X. Gong, Energy & Environmental Science, 2012, 5, 8208-8214.
    41. C. H. Hsieh, Y. J. Cheng, P. J. Li, C. H. Chen, M. Dubosc, R. M. Liang and C. S. Hsu, Journal of the American Chemical Society, 2010, 132, 4887-4893.
    42. Y. H. Cheng, Q. D. Yang, J. Y. Xiao, Q. F. Xue, H. W. Li, Z. Q. Guan, H. L. Yip and S. W. Tsang, Acs Applied Materials & Interfaces, 2015, 7, 19986-19993.
    43. B. A. E. Courtright and S. A. Jenekhe, Acs Applied Materials & Interfaces, 2015, 7, 26167-26175.
    44. X. H. Yang, R. X. Wang, C. J. Fan, G. Q. Li, Z. H. Xiong and G. E. Jabbour, Organic Electronics, 2014, 15, 2387-2394.
    45. Y. H. Zhou, F. H. Li, S. Barrau, W. J. Tian, O. Inganas and F. L. Zhang, Solar Energy Materials and Solar Cells, 2009, 93, 497-500.
    46. H. Kang, S. Hong, J. Lee and K. Lee, Advanced Materials, 2012, 24, 3005-3009.
    47. T. Hu, F. Li, K. Yuan and Y. W. Chen, Acs Applied Materials & Interfaces, 2013, 5, 5763-5770.
    48. R. Lampande, G. W. Kim, R. Pode and J. H. Kwon, RSC Adv., 2014, 4, 49855-49860.
    49. H. L. Yip, S. K. Hau, N. S. Baek and A. K. Y. Jen, Applied Physics Letters, 2008, 92, 193313.
    50. C. Goh, S. R. Scully and M. D. McGehee, Journal of Applied Physics, 2007, 101, 114503.
    51. S. K. Hau, H. L. Yip, O. Acton, N. S. Baek, H. Ma and A. K. Y. Jen, Journal of Materials Chemistry, 2008, 18, 5113-5119.
    52. H. L. Yip, S. K. Hau, N. S. Baek, H. Ma and A. K. Y. Jen, Advanced Materials, 2008, 20, 2376.
    53. W. Yu, L. Huang, D. Yang, P. Fu, L. Zhou, J. Zhang and C. Li, Journal of Materials Chemistry A, 2015, 3, 10660-10665.
    54. C. H. Wu, C. Y. Chin, T. Y. Chen, S. N. Hsieh, C. H. Lee, T. F. Guo, A. K. Y. Jen and T. C. Wen, Journal of Materials Chemistry A, 2013, 1, 2582-2587.
    55. H. L. Gao, X. W. Zhang, J. H. Meng, Z. G. Yin, L. Q. Zhang, J. L. Wu and X. Liu, Journal of Materials Chemistry A, 2015, 3, 3719-3725.
    56. V. Papamakarios, E. Polydorou, A. Soultati, N. Droseros, D. Tsikritzis, A. M. Douvas, L. Palilis, M. Fakis, S. Kennou, P. Argitis and M. Vasilopoulou, Acs Applied Materials & Interfaces, 2016, 8, 1194-1205.
    57. E. Polydorou, A. Zeniou, D. Tsikritzis, A. Soultati, I. Sakellis, S. Gardelis, T. A. Papadopoulos, J. Briscoe, L. C. Palilis, S. Kennou, E. Gogolides, P. Argitis, D. Davazoglou and M. Vasilopoulou, Journal of Materials Chemistry A, 2016, 4, 11844-11858.
    58. K. S. Shin, K. H. Lee, H. H. Lee, D. Choi and S. W. Kim, Journal of Physical Chemistry C, 2010, 114, 15782-15785.
    59. R. Sondergaard, M. Helgesen, M. Jorgensen and F. C. Krebs, Advanced Energy Materials, 2011, 1, 68-71.
    60. T. Stubhan, H. Oh, L. Pinna, J. Krantz, I. Litzov and C. J. Brabec, Organic Electronics, 2011, 12, 1539-1543.
    61. S. Trost, K. Zilberberg, A. Behrendt, A. Polywka, P. Gorrn, P. Reckers, J. Maibach, T. Mayer and T. Riedl, Advanced Energy Materials, 2013, 3, 1437-1444.
    62. S. Nho, G. Baek, S. Park, B. R. Lee, M. J. Cha, D. C. Lim, J. H. Seo, S. H. Oh, M. H. Song and S. Cho, Energy & Environmental Science, 2016, 9, 240-246.
    63. J. J. Wei, Z. G. Yin, S. C. Chen and Q. D. Zheng, Acs Applied Materials & Interfaces, 2017, 9, 6186-6193.
    64. X. H. Liu, X. D. Li, Y. R. Li, C. J. Song, L. P. Zhu, W. J. Zhang, H. Q. Wang and J. F. Fang, Advanced Materials, 2016, 28, 7405-7412.
    65. T. Hu, L. Chen, K. Yuan and Y. W. Chen, Nanoscale, 2015, 7, 9194-9203.
    66. S. H. Liao, H. J. Jhuo, Y. S. Cheng and S. A. Chen, Advanced Materials, 2013, 25, 4766-4771.
    67. S. H. Liao, H. J. Jhuo, P. N. Yeh, Y. S. Cheng, Y. L. Li, Y. H. Lee, S. Sharma and S. A. Chen, Scientific Reports, 2014, 4.
    68. H. P. Li, Y. H. Xu, C. V. Hoven, C. Z. Li, J. H. Seo and G. C. Bazan, Journal of the American Chemical Society, 2009, 131, 8903-8912.
    69. F. Yang, D. W. Kang and Y. S. Kim, Rsc Advances, 2017, 7, 19030-19038.
    70. M. F. Khan, M. Hameedullah, A. H. Ansari, E. Ahmad, M. B. Lohani, R. H. Khan, M. M. Alam, W. Khan, F. M. Husain and I. Ahmad, International Journal of Nanomedicine, 2014, 9, 853-864.
    71. M. F. Khan, A. H. Ansari, M. Hameedullah, E. Ahmad, F. M. Husain, Q. Zia, U. Baig, M. R. Zaheer, M. M. Alam, A. M. Khan, Z. A. AlOthman, I. Ahmad, G. M. Ashraf and G. Aliev, Scientific Reports, 2016, 6.
    72. E. A. Araujo, F. X. Nobre, G. D. Sousa, L. S. Cavalcante, M. Santos, F. L. Souza and J. M. E. de Matos, Rsc Advances, 2017, 7, 24263-24281.

    無法下載圖示 校內:2023-07-18公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE