| 研究生: |
陳彥嘉 Chen, Yen-Chia |
|---|---|
| 論文名稱: |
以溶膠凝膠法製備界面活性劑於氧化鋅表面應用於反式高分子太陽能電池 Surfactant-enriched ZnO surface via sol-gel process for efficient inverted polymer solar cells |
| 指導教授: |
溫添進
Wen, Ten‐Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 界面活性劑 、氧化鋅 、界面修飾 、有機高分子太陽能電池 |
| 外文關鍵詞: | surfactant, interfacial modification, polymer solar cell, ZnO |
| 相關次數: | 點閱:54 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以各類型界面活性劑做為溶膠凝膠法製程氧化鋅之添加劑,並將此修飾後的氧化鋅應用於高分子太陽能電池系統。藉由摻雜的方式,在完成製備氧化鋅薄膜的同時,也一併完成界面修飾。
第一部份主要使用分支型界面活性劑四辛基溴化銨TOAB添加入氧化鋅前驅液中,經證實界面活性劑最後會位於薄膜表面,可以有效降低表面粗糙度,減少表面團聚,界面活性劑上的長碳鏈提供有激高分子更佳的製備環境,且證實其溴離子會與氧化鋅有所鍵結,並有效降低電子能障提升載子傳輸能力,最後應用於有機高分子太陽能電池系統中能有效提高元件表現與穩定性。
第二部份則主要使用直鏈型界面活性劑溴化十六烷基吡啶CPB添加入氧化鋅中。與TOAB不同的是四個長碳鏈由單長直碳鏈所取代,結果顯示CPB同樣會位於氧化鋅表面,並具有降低表面粗糙度的效果,且可以使表面較TOAB更為疏水,為高分子提供更適合的製備環境。CPB同樣能提高電子萃取能力,提升有效載子,應用於有機高分子太陽能電池中可以將效率由8.08%最高提升至9.55%。
In this study, we demonstrated that the top surface was enriched by surfactants, tetraoctylammonium bromide (TOAB), cetylpyridinium bromide (CPB), in the sol-gel ZnO, being evidenced by depth profile of bromide. The formation of Zn-Br bonding from XPS results indicated Br occupy the defects on ZnO and release more free electron. The surfactant enriched ZnO surface resulted in the smoother surface and the more hydrophobicity because of the long alkyl chain. Furthermore, work function slightly reduced due to the induced dipole moment between Br- and N+ enhancing electron extraction ability. The tuned properties benefit to the power conversion efficiency (PCE) of bulk-heterojunction polymer solar cells (PSCs) by spin coating the organic active layer on the surfactant enriched ZnO surface. Based on the surfactant enriched sol-gel processed ZnO films, inverted PSCs showed the highest PCE of 9.33%, and 9.55% for the TOAB and CPB case, respectively, in comparison to the pristine ZnO films (8.08% PCE). Here, a one-step process was capable of ZnO fabrication while tuning surface properties by different surfactants, demonstrating great potential for efficient organic photovoltaics.
1. NREL chart, https://www.nrel.gov/pv/assets/images/efficiency-chart.png (accessed 04/13, 2018).
2. D. Kearns and M. Calvin, Journal of Chemical Physics, 1958, 29, 950-951.
3. C. W. Tang, Applied Physics Letters, 1986, 48, 183-185.
4. N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, Science, 1992, 258, 1474-1476.
5. G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger, Science, 1995, 270, 1789-1791.
6. S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz and J. C. Hummelen, Applied Physics Letters, 2001, 78, 841-843.
7. F. Padinger, R. S. Rittberger and N. S. Sariciftci, Advanced Functional Materials, 2003, 13, 85-88.
8. Z. Q. Liang, Q. F. Zhang, O. Wiranwetchayan, J. T. Xi, Z. Yang, K. Park, C. D. Li and G. Z. Cao, Advanced Functional Materials, 2012, 22, 2194-2201.
9. S. Q. Zhang, L. Ye and J. H. Hou, Advanced Energy Materials, 2016, 6, 1502529.
10. M. P. de Jong, L. J. van Ijzendoorn and M. J. A. de Voigt, Applied Physics Letters, 2000, 77, 2255-2257.
11. G. Greczynski, T. Kugler, M. Keil, W. Osikowicz, M. Fahlman and W. R. Salaneck, Journal of Electron Spectroscopy and Related Phenomena, 2001, 121, 1-17.
12. K. W. Wong, H. L. Yip, Y. Luo, K. Y. Wong, W. M. Lau, K. H. Low, H. F. Chow, Z. Q. Gao, W. L. Yeung and C. C. Chang, Applied Physics Letters, 2002, 80, 2788-2790.
13. F. C. Krebs and K. Norrman, Progress in Photovoltaics, 2007, 15, 697-712.
14. M. Y. Song, K. J. Kim and D. Y. Kim, Solar Energy Materials and Solar Cells, 2005, 85, 31-39.
15. A. Watanabe and A. Kasuya, Thin Solid Films, 2005, 483, 358-366.
16. M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis and D. S. Ginley, Applied Physics Letters, 2006, 89, 143517.
17. H. You, Y. F. Dai, Z. Q. Zhang and D. G. Ma, Journal of Applied Physics, 2007, 101, 026105.
18. C. H. Cheung, W. J. Song and S. K. So, Organic Electronics, 2010, 11, 89-94.
19. C. W. Chen, Y. J. Lu, C. C. Wu, E. H. E. Wu, C. W. Chu and Y. Yang, Applied Physics Letters, 2005, 87, 241121.
20. J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. L. Ma, X. Gong and A. J. Heeger, Advanced Materials, 2006, 18, 572.
21. K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho and A. J. Heeger, Advanced Materials, 2007, 19, 2445.
22. Y. C. Zhou, H.; Potscavage, J.W.J.; Fuentes-Hernandez, C.; Kim, S.-J.; Kippelen, B, Journal of Materials Chemistry, 2010, 20, 6189.
23. W. J. E. Beek, M. M. Wienk and R. A. J. Janssen, Advanced Materials, 2004, 16, 1009.
24. J. Gilot, I. Barbu, M. M. Wienk and R. A. J. Janssen, Applied Physics Letters, 2007, 91, 113520.
25. J. Liu, S. Y. Shao, B. Meng, G. Fang, Z. Y. Xie, L. X. Wang and X. L. Li, Applied Physics Letters, 2012, 100, 213906.
26. C. Y. Chang, K. T. Lee, W. K. Huang, H. Y. Siao and Y. C. Chang, Chemistry of Materials, 2015, 27, 5122-5130.
27. Y. Vaynzof, D. Kabra, L. H. Zhao, P. K. H. Ho, A. T. S. Wee and R. H. Friend, Applied Physics Letters, 2010, 97, 033309.
28. A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao and D. L. Kwong, Applied Physics Letters, 2008, 93, 221107.
29. Y. M. Sun, J. H. Seo, C. J. Takacs, J. Seifter and A. J. Heeger, Advanced Materials, 2011, 23, 1679.
30. M. N. Kamalasanan and S. Chandra, Thin Solid Films, 1996, 288, 112-115.
31. L. K. Jagadamma, M. Abdelsamie, A. El Labban, E. Aresu, G. O. N. Ndjawa, D. H. Anjum, D. Cha, P. M. Beaujuge and A. Amassian, Journal of Materials Chemistry A, 2014, 2, 13321-13331.
32. S. K. Hau, H. L. Yip, J. Y. Zou and A. K. Y. Jen, Organic Electronics, 2009, 10, 1401-1407.
33. S. K. Hau, H. L. Yip and A. K. Y. Jen, Polymer Reviews, 2010, 50, 474-510.
34. D. Y. Liu and T. L. Kelly, Nature Photonics, 2014, 8, 133-138.
35. W. J. Qin, X. R. Xu, D. Y. Liu, C. Y. Ma, L. Y. Yang, S. G. Yin, F. L. Zhang and J. Wei, Journal of Renewable and Sustainable Energy, 2013, 5, 053106.
36. F. C. Krebs, Y. Thomann, R. Thomann and J. W. Andreasen, Nanotechnology, 2008, 19.
37. C. E. Small, S. Chen, J. Subbiah, C. M. Amb, S. W. Tsang, T. H. Lai, J. R. Reynolds and F. So, Nature Photonics, 2012, 6, 115-120.
38. R. Steim, S. A. Choulis, P. Schilinsky and C. J. Brabec, Applied Physics Letters, 2008, 92, 093303.
39. J. H. Seo, A. Gutacker, Y. M. Sun, H. B. Wu, F. Huang, Y. Cao, U. Scherf, A. J. Heeger and G. C. Bazan, Journal of the American Chemical Society, 2011, 133, 8416-8419.
40. T. B. Yang, M. Wang, C. H. Duan, X. W. Hu, L. Huang, J. B. Peng, F. Huang and X. Gong, Energy & Environmental Science, 2012, 5, 8208-8214.
41. C. H. Hsieh, Y. J. Cheng, P. J. Li, C. H. Chen, M. Dubosc, R. M. Liang and C. S. Hsu, Journal of the American Chemical Society, 2010, 132, 4887-4893.
42. Y. H. Cheng, Q. D. Yang, J. Y. Xiao, Q. F. Xue, H. W. Li, Z. Q. Guan, H. L. Yip and S. W. Tsang, Acs Applied Materials & Interfaces, 2015, 7, 19986-19993.
43. B. A. E. Courtright and S. A. Jenekhe, Acs Applied Materials & Interfaces, 2015, 7, 26167-26175.
44. X. H. Yang, R. X. Wang, C. J. Fan, G. Q. Li, Z. H. Xiong and G. E. Jabbour, Organic Electronics, 2014, 15, 2387-2394.
45. Y. H. Zhou, F. H. Li, S. Barrau, W. J. Tian, O. Inganas and F. L. Zhang, Solar Energy Materials and Solar Cells, 2009, 93, 497-500.
46. H. Kang, S. Hong, J. Lee and K. Lee, Advanced Materials, 2012, 24, 3005-3009.
47. T. Hu, F. Li, K. Yuan and Y. W. Chen, Acs Applied Materials & Interfaces, 2013, 5, 5763-5770.
48. R. Lampande, G. W. Kim, R. Pode and J. H. Kwon, RSC Adv., 2014, 4, 49855-49860.
49. H. L. Yip, S. K. Hau, N. S. Baek and A. K. Y. Jen, Applied Physics Letters, 2008, 92, 193313.
50. C. Goh, S. R. Scully and M. D. McGehee, Journal of Applied Physics, 2007, 101, 114503.
51. S. K. Hau, H. L. Yip, O. Acton, N. S. Baek, H. Ma and A. K. Y. Jen, Journal of Materials Chemistry, 2008, 18, 5113-5119.
52. H. L. Yip, S. K. Hau, N. S. Baek, H. Ma and A. K. Y. Jen, Advanced Materials, 2008, 20, 2376.
53. W. Yu, L. Huang, D. Yang, P. Fu, L. Zhou, J. Zhang and C. Li, Journal of Materials Chemistry A, 2015, 3, 10660-10665.
54. C. H. Wu, C. Y. Chin, T. Y. Chen, S. N. Hsieh, C. H. Lee, T. F. Guo, A. K. Y. Jen and T. C. Wen, Journal of Materials Chemistry A, 2013, 1, 2582-2587.
55. H. L. Gao, X. W. Zhang, J. H. Meng, Z. G. Yin, L. Q. Zhang, J. L. Wu and X. Liu, Journal of Materials Chemistry A, 2015, 3, 3719-3725.
56. V. Papamakarios, E. Polydorou, A. Soultati, N. Droseros, D. Tsikritzis, A. M. Douvas, L. Palilis, M. Fakis, S. Kennou, P. Argitis and M. Vasilopoulou, Acs Applied Materials & Interfaces, 2016, 8, 1194-1205.
57. E. Polydorou, A. Zeniou, D. Tsikritzis, A. Soultati, I. Sakellis, S. Gardelis, T. A. Papadopoulos, J. Briscoe, L. C. Palilis, S. Kennou, E. Gogolides, P. Argitis, D. Davazoglou and M. Vasilopoulou, Journal of Materials Chemistry A, 2016, 4, 11844-11858.
58. K. S. Shin, K. H. Lee, H. H. Lee, D. Choi and S. W. Kim, Journal of Physical Chemistry C, 2010, 114, 15782-15785.
59. R. Sondergaard, M. Helgesen, M. Jorgensen and F. C. Krebs, Advanced Energy Materials, 2011, 1, 68-71.
60. T. Stubhan, H. Oh, L. Pinna, J. Krantz, I. Litzov and C. J. Brabec, Organic Electronics, 2011, 12, 1539-1543.
61. S. Trost, K. Zilberberg, A. Behrendt, A. Polywka, P. Gorrn, P. Reckers, J. Maibach, T. Mayer and T. Riedl, Advanced Energy Materials, 2013, 3, 1437-1444.
62. S. Nho, G. Baek, S. Park, B. R. Lee, M. J. Cha, D. C. Lim, J. H. Seo, S. H. Oh, M. H. Song and S. Cho, Energy & Environmental Science, 2016, 9, 240-246.
63. J. J. Wei, Z. G. Yin, S. C. Chen and Q. D. Zheng, Acs Applied Materials & Interfaces, 2017, 9, 6186-6193.
64. X. H. Liu, X. D. Li, Y. R. Li, C. J. Song, L. P. Zhu, W. J. Zhang, H. Q. Wang and J. F. Fang, Advanced Materials, 2016, 28, 7405-7412.
65. T. Hu, L. Chen, K. Yuan and Y. W. Chen, Nanoscale, 2015, 7, 9194-9203.
66. S. H. Liao, H. J. Jhuo, Y. S. Cheng and S. A. Chen, Advanced Materials, 2013, 25, 4766-4771.
67. S. H. Liao, H. J. Jhuo, P. N. Yeh, Y. S. Cheng, Y. L. Li, Y. H. Lee, S. Sharma and S. A. Chen, Scientific Reports, 2014, 4.
68. H. P. Li, Y. H. Xu, C. V. Hoven, C. Z. Li, J. H. Seo and G. C. Bazan, Journal of the American Chemical Society, 2009, 131, 8903-8912.
69. F. Yang, D. W. Kang and Y. S. Kim, Rsc Advances, 2017, 7, 19030-19038.
70. M. F. Khan, M. Hameedullah, A. H. Ansari, E. Ahmad, M. B. Lohani, R. H. Khan, M. M. Alam, W. Khan, F. M. Husain and I. Ahmad, International Journal of Nanomedicine, 2014, 9, 853-864.
71. M. F. Khan, A. H. Ansari, M. Hameedullah, E. Ahmad, F. M. Husain, Q. Zia, U. Baig, M. R. Zaheer, M. M. Alam, A. M. Khan, Z. A. AlOthman, I. Ahmad, G. M. Ashraf and G. Aliev, Scientific Reports, 2016, 6.
72. E. A. Araujo, F. X. Nobre, G. D. Sousa, L. S. Cavalcante, M. Santos, F. L. Souza and J. M. E. de Matos, Rsc Advances, 2017, 7, 24263-24281.
校內:2023-07-18公開