簡易檢索 / 詳目顯示

研究生: 曾靜芳
Tseng, Ching-Fang
論文名稱: 無線通訊應用之A(Co1/2Ti1/2)O3 (A = La, Nd)介電材料研製及微波元件設計
Fabrication of A(Co1/2Ti1/2)O3 (A = La, Nd) Dielectric Materials and Design of Microwave Components for Wireless Communication Applications
指導教授: 魏炯權
Wei, Chung-Chuang
黃正亮
Huang, Chang-Liang
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 154
中文關鍵詞: 介電特性單極天線
外文關鍵詞: dielectric properties, monopole antenna
相關次數: 點閱:94下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於無線通訊蓬勃的發展,使得人們對尺寸小、重量輕、高品質、低成本的需求逐漸增加,因此設計符合需求的微波元件提供無線通訊應用成為一個很大的挑戰。為了因應此一需求,當前只有微波介電陶瓷材料可達成,而高介電常數、高品質及良好的頻率溫度穩定性為目前微波介質陶瓷材料研究的重點,此外,降低燒結溫度亦為發展介電材料之重要課題之一。故本論文針對上述需求進行下列三大部分之研究與探討:
    一、 開發高介電常數、高品質因數及高溫度穩定性之新微波陶瓷材料
    (1) La(Co1/2Ti1/2)O3微波陶瓷材料之備製及其介電特性之研究與探討
    (2) Nd(Co1/2Ti1/2)O3微波陶瓷材料之備製及其介電特性之研究與探討
    二、 燒結促進劑對A(Co1/2Ti1/2)O3 (A = La, Nd)介電材料之探討
    (1) B2O3及CuO對La(Co1/2Ti1/2)O3微波陶瓷材料其介電特性之研究
    (2) B2O3及CuO對Nd(Co1/2Ti1/2)O3微波陶瓷材料其介電特性之研究
    三、 單極天線之設計與實現
    根據一、二部分之研究成果為基礎,設計、製作並分析兩種應用於無線通訊之平面單極天線:
    (1) 含寄生電路之單極天線之設計與實現
    (2) 十字形單極天線之設計與實現

    Due to the development in wireless communication was rapidly, how to design the high quality, to make the demands of the light and low cost devices is very important. In order to achieve miniaturization of the dimensions of the devices and for the system work with high efficiency and stability, many researches have been focusing on developing dielectric materials with high quality factor (Q×f), high dielectric constant (εr) and near zero temperature coefficient of resonant frequency (τf) for the use of dielectric resonator and microwave device substrate. Moreover, reduce the sintering temperature of dielectric materials are also become main studied. As mentioned above, the main research of this dissertation is divided three parts to study and discuss.

    1. Development novel microwave ceramic material which has high dielectric constant, high-quality factor and microwave of high temperature stability:

    (1) In the topic, the dielectric resonators of La(Co1/2Ti1/2)O3 system were prepared and studied. The dielectric constant values (εr) saturated at 29.8-30. The Q×f values of 34,000-67,000 (at 10 GHz) can be obtained when the sintering temperatures are in the range of 1410-1470oC. The temperature coefficient of resonant frequency τf was not sensitive to the sintering temperature. The εr value of 30, Q×f value of 67,000 (at 10 GHz) and τf value of -63.7 ppm/oC were obtained for La(Co1/2Ti1/2)O3 ceramics sintered at 1440oC for 6 h.
    (2) The DRs of Nd(Co1/2Ti1/2)O3 system were prepared and investigated in this topic. The microwave dielectric properties and the microstructures of Nd(Co1/2Ti1/2)O3 ceramics prepared by conventional solid-state route have been studied. The prepared Nd(Co1/2Ti1/2)O3 exhibited a mixture of Co and Ti showing 1:1 order in the B-site. The εr value of 27, Q×f value of 140,000(at 9GHz) and τf value of -46 ppm/oC were obtained for Nd(Co1/2Ti1/2)O3 ceramics sintering at 1440oC for 4 h.

    2. Effect of Additives on Microstructures and Microwave Dielectric Properties of A(Co1/2Ti1/2)O3 (A = La, Nd)Compositions:

    (1) The dielectric properties of B2O3 and CuO doped La(Co1/2Ti1/2)O3 ceramics have been investigated. The optimum dielectric properties were obtained for La(Co1/2Ti1/2)O3 ceramics sintered at 1440oC for 6 h. However, the sintering temperatures of conventional microwave dielectric ceramics used for dielectric resonators, filters and other communication devices normally at 1200-1400oC. For practical applications, it is necessary to reduce the sintering temperature of La(Co1/2Ti1/2)O3 ceramics. Low melting glass addition is generally advantageous to reduce the sintering temperature of dielectric materials. In this dissertation, B2O3 and CuO were added to further lower the respective sintering temperature. A large sintering temperature reduction (about 100~200oC) can be achieved by adding B2O3 and CuO to the La(Co1/2Ti1/2)O3 ceramics.
    (2) The crystalline phases, the microstructures and the microwave dielectric properties of B2O3 and CuO doped La(Co1/2Ti1/2)O3 ceramics were investigated. The εr value of 27, Q×f value of 140,000(at 9GHz) and τf value of -46 ppm/oC were obtained for Nd(Co1/2Ti1/2)O3 ceramics sintering at 1440oC for 4 h. B2O3 and CuO were added to lower the respective sintering temperature. With 0.75 wt% B2O3 addition, a dielectric constant of 27.2, a Q×f value of 153000 (GHz) and a τf value of 0 ppm/oC were obtained for Nd(Co1/2Ti1/2)O3 ceramics at 1320oC for 4 h, and higher than the dielectric properties of purity Nd(Co1/2Ti1/2)O3 ceramics. With 0.5 wt% CuO addition, a dielectric constant of 27.6, a Q×f value of 165000 (at 9 GHz) and τf value of -20 ppm/oC were obtained for Nd(Co1/2Ti1/2)O3 ceramics sintered at 1350oC for 4 h.

    3. Design and Fabrication of Planar Monopole Antennas:

    Two planar monopole antennas, one is crisscross monopole antenna and the other is a monopole antenna with a shorted parasitic element, for wireless system application have been investigated in this part. The impedance bandwidth changes significantly with varying the feed-gap. By tuning the feed gap height d between the ground plane and feed point, optimal wideband performance was obtained. The planar monopole antennas were also implemented and characteristics with normal planar monopole antennas were also investigated in different substrate materials.

    CONTENTS Abstract I Contents VI Table Captions IX Figure Captions X Chapter 1 Generation Introduction 1 Chapter 2 Theory of Dielectric Resonator and Monopole Antenna 9 2-1 Theory of Microwave Dielectric Properties 9 2-2 Analysis and Measurement of Dielectric Resonator 13 2-3 Basic Theory of Monopole Antennas 18 2-3-1 Image Theory 18 2-3-2 Basic Theory of Monopole Antennas 20 Chapter 3 Study of Microstructures and Microwave Dielectric Properties of A(Co1/2Ti1/2)O3 (A = La, Nd) Compositions 23 3-1 Experimental Procedures 23 3-1-1 Sample Preparation 23 3-1-2 Characteristics Analysis and Measurement of Microwave Dielectric Properties 24 3-2 Results and Discussion 25 Chapter 4 Effect of Additives on Microstructures and Microwave Dielectric Properties of La(Co1/2Ti1/2)O3 and Nd(Co1/2Ti1/2)O3 Compositions 30 4-1 Experimental Procedures 30 4-1-1 Sample Preparation 30 4-1-2 Characteristics Analysis Measurement of Microwave Dielectric Properties 31 4-2 Results and Discussion 32 4-2-1 Microstructures and Microwave Dielectric Properties of B2O3- doped and CuO-doped La(Co1/2Ti1/2)O3 32 4-2-2 Microstructures and Microwave Dielectric Properties of B2O3-doped and CuO-doped Nd(Co1/2Ti1/2)O3 38 Chapter 5 Planar Monopole Antennas Design 44 5-1 Planar Monopole Antenna with a Shorted Parasitic Element 44 5-1-1 Design of Planar Monopole Antenna with a Shorted Parasitic Element 44 5-1-2 Results and Discussion 45 5-2 Planar Crisscross Monopole Antenna 49 5-2-1 Design of Planar Crisscross Monopole Antenna 49 5-2-2 Results and Discussion 50 Chapter 6 Conclusions and Future Works 54 6-1 Conclusions 54 6-2 Future Works 60 Reference 62 Tables 69 Figures 76

    [1] R. D. Richtmyer, “Dielectric Resonators,” J. Appl. Phys., 10 (1939) 391-398.
    [2] W. Wersing and Curr. Opin., “Microwave Ceramics for Resonators and Filters,” Solid State Mater., Sci., 1 (1996) 715-731.
    [3] R. Ubic, I. M. Reaney and W. E. Lee, “The Microwave Dielectric Solid-Solution Phase in the System BaO-Nd2O3-TiO2,” Int. Mater. Rev., 43 (1998) 205-219.
    [4] M. Takata and K. Kageyama, “Microwave Characteristics of A(B3+1/2B5+1/2)O3 Ceramics (A = Ba, Ca, Sr; B3+ = La, Nd, Sm, Yb; B5+ = Nb, Ta),” J. Am. Ceram. Soc. 72 (1989) 1955-1959.
    [5] S. Kawashima, M. Nishida, I Ueda, H. Ouchi and S. Hayakawa, “Dielectric Properties of Ba(Zn1/3Nb2/3)O3-Ba(Zn1/3Ta2/3)O3,” Proc. Ferroelectr. Mater. Appl., 1 (1997) 293.
    [6] S. Kawashima, M. Nishida, I Ueda, H. Ouchi, “Ba(Zn1/3Ta2/3)O3 Ceramics with Low Dielectric Loss at Microwave Frequencies,” J. Am. Ceram. Soc., 66 (1983) 421-423.
    [7] T. Konoike and H. Yamura, “Dielectric Ceramic Composition for Microwave Frequencies,” U. S. Patent No. 4,585,774, 1986.
    [8] H. Tamura, T. Konoike, Y. Sakabe and K. Wakino, “Improved High-Q Dielectric Resonator with Complex Perovskite Structure,” J. Am. Cerm. Soc., 67 (1984) C59-61.
    [9] S. Kawashima, M. Nishida, I. Ueda and K. Ouchi, in Inst. Electronics Comm. Engers. Japan MW 80-29 (1980) 1.
    [10] M. Onoda, K. Kuwata, K. Kaneta, K. Yoyama and S. Nomura, “Ba(Zn1/3Nb2/3O3) -Sr(Zn1/3Nb2/3)O3 Solid solution Ceramics with Temperature Stable High Dielectric Constant and Low Microwave Loss,” Jpn. J. Appl. Phys., 21 (1982) 1707-1710.
    [11] H. Kagata and J. Kato, “Dielectric Properties of Ca-Based Complex Perovskite at Microwave Frequencies,” Jpn. J. Appl. Phys., 33 (1994) 5463-5465.
    [12] J. Takahashi, K. Kageyama, T. Fujii, T. Yamada and K. Kodaira, “Formation and Microwave Dielectric Properties of Sr(Ga0.5Ta0.5)O3-Based Complex Perovskites,” J. Mater. Electron., 8 (1997) 79-84.
    [13] S. Kucheiko, H. J. Kim and D. H. Jung, “Microwave Dielectric Properties of LaZn0.5Ti0.5O3 Ceramics Prepared by Sol–Gel Process,” Jpn. J. Appl. Phys., 35 (1996) 668-672.
    [14] S. Y. Cho, C. H. Kim, D. W. Kim, K. S. Hong and J. H. Kim, “Dielectric Properties of Ln(Mg1/2Ti1/2)O3 as Substrates for High-Tc Superconductor Thin Films,” J. Mater. Res. 14 [6] (1999) 2484-2487.
    [15] G. Harshe, A. S. Bhalla and L. E. Cross, “Synthesis and Dielectric Properties of a Cubic Perovskite Material: La(Mg1/2Ti1/2)O3,” Mater. Lett., 18 (1994) 173-175.
    [16] S. Y. Cho, M. K. Seo, K. S. Hong, S. J. Park and I. T. Kim, “Influence of ZnO Evaporation on the Microwave Dielectric Properties of La(ZnTi)O3,” Mater. Res. Bull., 32 (1997) 725-735.
    [17] S. Nmura, K. Toyama, K. kaneta, “Ba(Mg1/3Ta2/3)O3 Ceramics with Temperature -Stable High Dielectric Constant and Low Microwave Loss,” Jpn. J. Appl. Phys., 21 (1982) L624-626.
    [18] G. Wolfram, H.E. Gobel, “Existence Range, Structural and Dielectric Properties of ZrxTiySnzO4,” Mater. Res. Bull., 16 (1981) 1455-1563.
    [19] I. Burn, “Low-firing dielectric composition,” U.S. patent No. 4,845,062, 1989.
    [20] T. Takada, S. F. Wang, S. Yoshikawa, S. J. Yang and R. E. Newnham, “Effect of Glass Additions on BaO-TiO2-WO3 Microwave Ceramics,” J. Am. Ceram. Soc., 77 (1994) 1909-1916.
    [21] T. Takada, S. F. Wang, S. Yoshikawa, S. J. Yang and R. E. Newnham, “Effects of Glass Additions on (Zr,Sn)TiO4 for Microwave Applications,” J. Am. Ceram. Soc., 77 (1994) 2485-2488.
    [22] V. Tolmer and G. Desqardin, “Low-Temperature Sintering and Influence of the Process on the Dielectric Properties of Ba(Zn1/3Ta2/3)O3,” J. Am. Ceram. Soc., 80 (1997) 1981-1991.
    [23] S. I. Hirno, T. Hayashi and A. Hattori, “Chemical Processing and Microwave Characteristics of (Zr,Sn)TiO4 Microwave Dielectrics,” J. Am. Ceram. Soc., 74 (1991) 1320-1324.
    [24] C. L. Huang, C. S. Hsu, “Improved High Q Value of 0.5LaAlO3-0.5SrTiO3 Microwave Dielectric Ceramics at Low Sintering Temperature,” Mater. Res. Bull., 36 (2001) 2677-2687.
    [25] C. S. Hsu, C. L. Huang, J. F. Tseng and C. Y. Huang, “Improved High-Q Microwave Dielectric Resonator Using CuO-Doped MgNb2O6 Ceramics,” Mater. Res. Bull., 38 (2003) 1091-1099.
    [26] C. S. Hsu, C. L. Huang and K. H. Chiang, “Microwave dielectric properties of B2O3 doped LaAlO3 ceramics at low sintering temperature,” J. Mater. Sci., 38 (2003) 3495-3500.
    [27] G. Kumar and K. P. Ray, “Broadband microstrip antennas,” Artech House, Norwood, MA, (2003) 371-374.
    [28] M.J. Ammann, “Square planar monopole antenna,” In Proceedings of International Conference on Antennas and Propagation, 1999, Orlando, FL 37-40.
    [29] E. Lee, P.S. Hall, and P. Gardner, “Compact Wideband Planar Monopole Antenna,” Electron. Lett., 35 (1999) 2157-2158.
    [30] J.Y. Jan and L.C. Tseng, “Small Planar Monopole Antenna with A Shorted Parasitic Inverted-L Wire for Wireless Communications in the 2.4-, 5.2-, and 5.8-GHz Bands,” IEEE Trans. Antennas Propag., 52 (2004) 1903-1905.
    [31] C.Y. Huang and P.Y. Chiu, “Dual-Band Monopole Antenna with Shorted Parasitic Element,” Electron. Lett. 41 (2005) 1154-1155.
    [32] I. J. Bahl and P. Bhartia, “Microstrip antennas,” Artech House, Massachusetts, (1980).
    [33] K. R. Carver and J. W. Mink, “Microstrip antenna technology,” IEEE Trans Antennas Propag., 1 (1981) 2-24.
    [34] D. M. Pozar, “Microstrip antennas,” Proc. IEEE, 80 (1992) 79-91.
    [35] C. A. Balanis, “Antenna theory: Analysis and design,” John Wiley, New York, (1997).
    [36] W. D. Kingery, H. K. Bowen and D. R. Uhlmann, “Introduction to Ceramics,” 2nd edition, Wiley, New York, (1986).
    [37] G. Burns, “Solid State Physics,” Academic Press, Inc., 1985.
    [38] B. D. Silvermann, “Microwave Absorption in cubic Strontium Titanate,” Phys. Rev., 125 [6] (1962) 1921-1930.
    [39] C. H. Perry, D. J. McCarthy and G. Rupprecht, “Dielectric Dispersion of Some Pervoskite Zirconate,” Phys. Rev., 126 (1962) 1710-1721.
    [40] K. Wakino, M. Murata and H. Tamura, “Far-Infrared Reflection Spectra of Ba(Zn,Ta)O3-BaZrO3 Dielectric Resonator Material.” J. Am. Ceram. Soc., 69 (1986) 34-37.
    [41] W. E. Courtney, “Analysis and Evaluation of Method of Measuring the Complex Permittivity and Permeability of Microwave Insulators,” IEEE Trans. Microwave Theory Tech., MTT-18 (1970) 476-485.
    [42] B. W. Hakki and P. D. Coleman, “A Dielectric Resonator Method of Measuring Inductive in the Millimeter Range,” IEEE Trans. Microwave Theory Tech., MTT-16 (1985) 402-406.
    [43] Y. Kobayashi and M. Katoh, “Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method,” IEEE Trans. Microwave Theory Tech., MTT-33 (1985) 586-592.
    [44] Balanis, Antenna Theory Analysis and Design, 2nd edition, John Wiley & Sons, New York, Chapter 4 (1997).
    [45] W. L. Stuzman and G. A. Thiele, Antenna Theory and Design, 2nd edition, John Wiley & Sons, New York, Chapter 2 (1998).
    [46] W. S. Kim, S. M. Ha, S. Yun, and H. H. Park, “Microstructure and Electrical Properties of Ln2Ti2O7 (Ln = La, Nd),” Thin Solid Films, 420-421 575-78 (2002).
    [47] J. Takahashi, K. Kageyama, and T. Hayashi, “Dielectric Properties of Double-Oxide Ceramics in the System Ln2O3-TiO2 (Ln = La, Nd and Sm),” Jpn. J. Appl. Phy., 30 [9B] 2354-58 (1991)
    [48] C. W. Ahn, S. N. Nahm, Y. S. Lim, W. Choi, H. M. Park and H. J. Lee, “Microstructure and Microwave Dielectric Properties of Ba(Co1/3Nb2/3)O3 Ceramics,” Jpn. J. Appl. Phys., 41 (2002) 5277-5280.
    [49] D. A. Saagala, S. Nambu, “Microscopic Calculation of Dielectric Loss at Microwave Frequencies for Complex Perovskite Ba(Zn1/3Ta2/3)O3,” J. Am. Ceram. Soc., 75 (1992) 2573-2575.
    [50] W. S. Kim, T. H. Hong, E. S. Kim, K. H. Yoon, “Microwave Dielectric Properties and Far Infrared Reflectivity Spectra of the (Zr0.8Sn0.2)TiO4 Ceramics with Additives,” Jpn. J. Appl. Phys., 37 (1998) 5367-5371.
    [51] Ansoft High-Frequency Structure Simulator (HFSS), Ansoft Corporation.
    [52] M. N. Suma, P. C. Bybi, and P. Mohanan, “A Wideband Printed Monopole Antenna for 2.4-GHz WLAN Appliactions,” Microwave Opt. Technol. Lett., 48 (2006) 871-873.
    [53] J. Liang, C. C. Chiau, X. Chen, and C. G. Parini, “Analysis and Design of UWB Disc Monopole Antennas,” IEE Seminar on Ultra Wideband Communications Technologies and System Design, (2004) 103-106.
    [54] C. F. Tseng, C. H. Hsu, C. L. Huang, C. C. Wei, “Microwave Dielectric Characteristics of Zr0.8Sn0.2TiO4 Ceramics with WO3 Additives,” Jpn. J. Appl. Phy., 45 (2006) 2680-2682.

    無法下載圖示 校內:2037-06-23公開
    校外:2037-06-23公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE