簡易檢索 / 詳目顯示

研究生: 楊恆華
Edward, Suhendra
論文名稱: 結合物質流分析和流體動力學宿命模型模擬氧化鋅奈米顆粒在感潮河流中之宿命和傳輸
Simulating the fate and transport of ZnO nanoparticles in a tidally influenced river using the linkage of material flow analysis and hydrodynamic fate model
指導教授: 張智華
Chang, Chih-Hua
共同指導教授: 侯文哲
Hou, Wen-Che
學位類別: 博士
Doctor
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2025
畢業學年度: 114
語文別: 英文
論文頁數: 115
外文關鍵詞: engineered nanomaterials, environmental fate models, surface waters, ENM fate processes, tide, spatiotemporal fate and transport model, dynamic dissolution, dynamic heteroaggregation, sensitivity analysis
相關次數: 點閱:32下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Exposure assessment constitutes a fundamental component of the risk assessment of engineered nanomaterials (ENMs). Given the considerable challenges in performing direct and quantitative measurements of ENMs in complex environmental systems, environmental fate models (EFMs) have become essential tools for estimating their environmental distribution. This study reviews the development and application of EFMs in surface waters and categorizes existing models into three principal types: material flow analysis models (MFAMs), multimedia compartment models (MCMs), and spatial river/watershed models (SRWMs). MFAMs are employed to estimate ENM releases and provide input concentrations for EFMs, while MCMs represent intermedia transfer processes under spatially and temporally averaged conditions. In contrast, SRWMs resolve hydrological and morphological variability in rivers and watersheds with higher spatial and temporal detail. As the foundation of EFMs, we also review the existing and emerging ENM fate processes and their inclusion in recent EFMs. The review is concluded by identifying the opportunities and challenges in using EFMs for ENMs.
    To enhance predictive capability of exposure modeling for ENMs, this research introduces an integrated modeling framework that links a form-specific probabilistic MFAMs (P-MFAMs) with a highly spatiotemporally resolved river model. The approach was applied to zinc oxide nanoparticles (ZnONP) in the Yanshuei River, southern Taiwan, incorporating local release characteristics, tidal influence, and experimentally derived dissolution rate coefficients. The form-specific P-MFAMs indicated that pristine ZnONP accounted for 89% of releases due to limited wastewater treatment coverage. Dissolution was identified as the dominant fate process of ZnONP, whereas heteroaggregation played a relatively minor role. The occurrence of free ZnONP was infrequent and mainly confined to discharge zones, with the maximum steady-state concentration reaching 0.9 μg/L. In contrast, dissolved Zn ions represented the primary transformation product, with concentrations accumulating downstream to approximately 7 μg/L. Sensitivity analysis revealed that dissolution strongly influenced outcomes at dissolution rates above 3 d⁻¹, while heteroaggregation became relevant only when the dissolution rate was extremely low (≤0.1 d⁻¹). Tidal influences also exerted a marked effect on Zn species distribution: over a two-month simulation period, high tides increased Zn species accumulation up to threefold in river sections receiving substantial inputs, whereas low tides facilitated the drain of Zn plumes.
    These findings highlight the necessity of integrating the realistic local ENM release, including the ENM forms as the output of probabilistic MFAMs with spatiotemporal fate models to support higher-tier exposure assessments of ENMs.

    Abstract I Acknowledgement III Table of Contents IV List of Tables VI List of Figures VII List of Abbreviations IX Chapter 1 Introduction 1 1.1 The risk assessment of engineered nanomaterials in the aqueous environment 2 1.2 Modeling distribution of engineered nanomaterials in surface waters 4 1.3 The coupling of material flow analysis models and environmental fate models 6 1.4 Fate processes of engineered nanomaterials in the aquatic environment 7 1.5 Spatial river/watershed models of ZnO nanoparticles 8 1.6 Tidal effect on the fate and transport of ZnO nanoparticles 9 1.7 Motivation 10 1.8 Aims and outlines of this study 12 1.9 Publications included in this thesis 14 Chapter 2 A Review on the Environmental Fate Models for Estimating the Distribution of Engineered Nanomaterials in Aquatic Systems 15 2.1 Introduction 17 2.2 Exposure Models for the Prediction of Engineered Nanomaterials’ (ENMs’) Concentrations in Surface Waters 20 2.2.1 Material Flow Analysis Models (MFAMs) 20 2.2.2 Environmental Fate Models (EFMs) 25 2.3 Engineered Nanomaterial (ENM) Fate Processes in Surface Waters 29 2.3.1 Aggregation 30 2.3.2 Dissolution 31 2.3.3 Sulfidation 32 2.3.4 Photoreaction 33 2.4 Path Forward 34 2.5 Summary 37 Chapter 3 Simulating the fate and transport of ZnO nanoparticles in a tidal river: Coupling a form-specific material flow analysis model to a hydrodynamic fate model 39 3.1 Introduction 41 3.2 Materials and methods 44 3.2.1 Form-specific probabilistic material flow analysis (MFA) 44 3.2.2 Estimation of ZnO nanoparticle mass 46 3.2.3 Estimation of ZnO nanoparticle loads 50 3.2.4 Study site 51 3.2.5 Hydrodynamic model 52 3.2.6 Hydrodynamic linkage file 54 3.2.7 Spatial river model 56 3.2.8 Fate processes 57 3.2.9 The determination of Zn species concentrations under high, low, and average tide scenarios 63 3.2.10 Sensitivity Analysis 64 3.3 Results and discussion 64 3.3.1 Consumption and environmental release of ZnO nanoparticles 64 3.3.2 Estimation of ZnO nanoparticle loadings 68 3.3.3 Temporal variations of ZnO nanoparticles and their transformation products 69 3.3.4 Spatial distributions of ZnO nanoparticles and their transformation products 71 3.3.5 The tidal influence on the transport and distributions of Zn species 73 3.3.6 Sensitivity analysis 75 3.4 Conclusion 83 Chapter 4 Conclusions 85 4.1 Summary 86 4.2 Limitations of study 87 4.3 Implications and future work 88 References 90

    Abbas, M., Buntinx, M., Deferme, W., & Peeters, R. (2019). (Bio)polymer/ZnO Nanocomposites for Packaging Applications: A Review of Gas Barrier and Mechanical Properties. Nanomaterials, 9(10), 1494. https://doi.org/10.3390/nano9101494
    Abbas, Q., Yousaf, B., Amina, Ali, M. U., Munir, M. A. M., El-Naggar, A., Rinklebe, J., & Naushad, M. (2020). Transformation pathways and fate of engineered nanoparticles (ENPs) in distinct interactive environmental compartments: A review. Environment International, 138, 105646. https://doi.org/10.1016/j.envint.2020.105646
    Adam, V., Caballero-Guzman, A., & Nowack, B. (2018). Considering the forms of released engineered nanomaterials in probabilistic material flow analysis. Environmental Pollution, 243, 17–27. https://doi.org/10.1016/j.envpol.2018.07.108
    Adam, V., Wu, Q., & Nowack, B. (2021). Integrated dynamic probabilistic material flow analysis of engineered materials in all European countries. NanoImpact, 22, 100312. https://doi.org/10.1016/j.impact.2021.100312
    Ahmed, Md. M., Zhao, R., Hayytov, B., Shang, Y., Li, J., & Du, J. (2020). Morphology evolution of ZnO by controlling solvent and electrochemical sensing of hexagonal nanotablets toward amines. Chinese Chemical Letters, 31(8), 2091–2094. https://doi.org/10.1016/j.cclet.2020.01.014
    Ahsan, M. A., Jabbari, V., El-Gendy, A. A., Curry, M. L., & Noveron, J. C. (2019). Ultrafast catalytic reduction of environmental pollutants in water via MOF-derived magnetic Ni and Cu nanoparticles encapsulated in porous carbon. Applied Surface Science, 497, 143608. https://doi.org/10.1016/j.apsusc.2019.143608
    Ahsan, Md. A., Jabbari, V., Imam, M. A., Castro, E., Kim, H., Curry, M. L., Valles-Rosales, D. J., & Noveron, J. C. (2020). Nanoscale nickel metal organic framework decorated over graphene oxide and carbon nanotubes for water remediation. Science of The Total Environment, 698, 134214. https://doi.org/10.1016/j.scitotenv.2019.134214
    Allafchian, A., & Babaei Khorzoghi, M. (2025). A comprehensive review on nanotechnology’s multifaceted applications in sports: Enhancing performance, safety, and comfort. Results in Chemistry, 17, 102538. https://doi.org/10.1016/j.rechem.2025.102538
    Allison, J. D., & Allison, T. L. (2005). Partition Coefficients For Metals In Surface Water, Soil, And Waste. US EPA.
    Alvarez, P. J. J., Chan, C. K., Elimelech, M., Halas, N. J., & Villagrán, D. (2018). Emerging opportunities for nanotechnology to enhance water security. Nature Nanotechnology, 13(8), 634–641. https://doi.org/10.1038/s41565-018-0203-2
    Ambrose, R. B. (2017). WASP8 Stream Transport—Model Theory and User’s Guide. US EPA.
    Ambrose, R. B., Avant, B., Han, Y., Knightes, C., & Wool, T. (2017). Water Quality Assessment Simulation Program (WASP8): Upgrades to the Advanced Toxicant Module for Simulating Dissolved Chemicals, Nanomaterials, and Solids. US EPA.
    Ashraf, M., Khan, I., Usman, M., Khan, A., Shah, S. S., Khan, A. Z., Saeed, K., Yaseen, M., Ehsan, M. F., Tahir, M. N., & Ullah, N. (2020). Hematite and Magnetite Nanostructures for Green and Sustainable Energy Harnessing and Environmental Pollution Control: A Review. Chemical Research in Toxicology, 33(6), 1292–1311. https://doi.org/10.1021/acs.chemrestox.9b00308
    Asmat-Campos, D., Delfín-Narciso, D., & Juárez-Cortijo, L. (2021). Textiles Functionalized with ZnO Nanoparticles Obtained by Chemical and Green Synthesis Protocols: Evaluation of the Type of Textile and Resistance to UV Radiation. Fibers, 9(2), 10. https://doi.org/10.3390/fib9020010
    Auffan, M., Rose, J., Bottero, J.-Y., Lowry, G. V., Jolivet, J.-P., & Wiesner, M. R. (2009). Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature Nanotechnology, 4(10), 634–641. https://doi.org/10.1038/nnano.2009.242
    Azzouz, I., Habba, Y. G., Capochichi-Gnambodoe, M., Marty, F., Vial, J., Leprince-Wang, Y., & Bourouina, T. (2018). Zinc oxide nano-enabled microfluidic reactor for water purification and its applicability to volatile organic compounds. Microsystems & Nanoengineering, 4(1), 17093. https://doi.org/10.1038/micronano.2017.93
    Baalousha, M., Cornelis, G., Kuhlbusch, T. a. J., Lynch, I., Nickel, C., Peijnenburg, W., & Brink, N. W. van den. (2016). Modeling nanomaterial fate and uptake in the environment: Current knowledge and future trends. Environmental Science: Nano, 3(2), 323–345. https://doi.org/10.1039/C5EN00207A
    Bian, S.-W., Mudunkotuwa, I. A., Rupasinghe, T., & Grassian, V. H. (2011). Aggregation and Dissolution of 4 nm ZnO Nanoparticles in Aqueous Environments: Influence of pH, Ionic Strength, Size, and Adsorption of Humic Acid. Langmuir, 27(10), 6059–6068. https://doi.org/10.1021/la200570n
    Bokobza, L. (2018). Natural Rubber Nanocomposites: A Review. Nanomaterials, 9(1), 12. https://doi.org/10.3390/nano9010012
    Bornhöft, N. A., Sun, T. Y., Hilty, L. M., & Nowack, B. (2016). A dynamic probabilistic material flow modeling method. Environmental Modelling & Software, 76, 69–80. https://doi.org/10.1016/j.envsoft.2015.11.012
    Borysiewicz, M. A. (2019). ZnO as a Functional Material, a Review. Crystals, 9(10), 505. https://doi.org/10.3390/cryst9100505
    Bouchard, D., Chang, X., & Chowdhury, I. (2015). Heteroaggregation of multiwalled carbon nanotubes with sediments. Environmental Nanotechnology, Monitoring & Management, 4, 42–50. https://doi.org/10.1016/j.enmm.2015.07.001
    Bouchard, D., Knightes, C., Chang, X., & Avant, B. (2017). Simulating Multiwalled Carbon Nanotube Transport in Surface Water Systems Using the Water Quality Analysis Simulation Program (WASP). Environmental Science & Technology, 51(19), 11174–11184. https://doi.org/10.1021/acs.est.7b01477
    Boverhof, D. R., Bramante, C. M., Butala, J. H., Clancy, S. F., Lafranconi, M., West, J., & Gordon, S. C. (2015). Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regulatory Toxicology and Pharmacology, 73(1), 137–150. https://doi.org/10.1016/j.yrtph.2015.06.001
    Brunner, G. W. (2016, February). HEC-RAS River Analysis System, 2D Modeling User’s Manual Version 5.0. CEIWR-HEC. https://www.hec.usace.army.mil/software/hec-ras/documentation/HEC-RAS%205.0%202D%20Modeling%20Users%20Manual.pdf
    Calipinar, H., & Ulas, D. (2019). Development of Nanotechnology in the World and Nanotechnology Standards in Turkey. Procedia Computer Science, 158, 1011–1018. https://doi.org/10.1016/j.procs.2019.09.142
    Cereja, R., Brotas, V., Nunes, S., Rodrigues, M., Cruz, J. P. C., & Brito, A. C. (2022). Tidal influence on water quality indicators in a temperate mesotidal estuary (Tagus Estuary, Portugal). Ecological Indicators, 136, 108715. https://doi.org/10.1016/j.ecolind.2022.108715
    Chang, B. P., Akil, H. M., Nasir, R. B. M., Bandara, I. M. C. C. D., & Rajapakse, S. (2014). The effect of ZnO nanoparticles on the mechanical, tribological and antibacterial properties of ultra-high molecular weight polyethylene. Journal of Reinforced Plastics and Composites, 33(7), 674–686. https://doi.org/10.1177/0731684413509426
    Chen, C.-W., Chen, C.-F., & Dong, C.-D. (2012). Copper Contamination in the Sediments of Love River Mouth, Taiwan. International Journal of Chemical Engineering and Applications, 58–62. https://doi.org/10.7763/IJCEA.2012.V3.160
    Chen, C.-Y., & Zepp, R. G. (2015). Probing Photosensitization by Functionalized Carbon Nanotubes. Environmental Science & Technology, 49(23), 13835–13843. https://doi.org/10.1021/acs.est.5b01041
    Chowdhury, I., Hou, W.-C., Goodwin, D., Henderson, M., Zepp, R. G., & Bouchard, D. (2015). Sunlight affects aggregation and deposition of graphene oxide in the aquatic environment. Water Research, 78, 37–46. https://doi.org/10.1016/j.watres.2015.04.001
    Clavier, A., Praetorius, A., & Stoll, S. (2019). Determination of nanoparticle heteroaggregation attachment efficiencies and rates in presence of natural organic matter monomers. Monte Carlo modelling. Science of The Total Environment, 650, 530–540. https://doi.org/10.1016/j.scitotenv.2018.09.017
    Cornelis, G. (2015). Fate descriptors for engineered nanoparticles: The good, the bad, and the ugly. Environmental Science: Nano, 2(1), 19–26. https://doi.org/10.1039/C4EN00122B
    Dale, A. L., Casman, E. A., Lowry, G. V., Lead, J. R., Viparelli, E., & Baalousha, M. (2015). Modeling Nanomaterial Environmental Fate in Aquatic Systems. Environmental Science & Technology, 49(5), 2587–2593. https://doi.org/10.1021/es505076w
    Dale, A. L., Lowry, G. V., & Casman, E. A. (2013). Modeling Nanosilver Transformations in Freshwater Sediments. Environmental Science & Technology, 47(22), 12920–12928. https://doi.org/10.1021/es402341t
    Dale, A. L., Lowry, G. V., & Casman, E. A. (2015). Stream Dynamics and Chemical Transformations Control the Environmental Fate of Silver and Zinc Oxide Nanoparticles in a Watershed-Scale Model. Environmental Science & Technology, 49(12), 7285–7293. https://doi.org/10.1021/acs.est.5b01205
    Dept. of Household Registration, M. of the I. R. of C. (2021, January 8). Household Registration Statistics Data Analysis in December 2020 [Text/html]. https://www.ris.gov.tw/app/en/2121?sn=21007107
    Di Toro, D. M., Mahony, J. D., Hansen, D. J., & Berry, W. J. (1996). A model of the oxidation of iron and cadmium sulfide in sediments. Environmental Toxicology and Chemistry, 15(12), 2168–2186. https://doi.org/10.1002/etc.5620151212
    Diamonchem Inc. (2023). Product information of active ZnO from Diamonchem Inc., Yuanlin City, Taiwan. https://www.diamonchem.com.tw/en/product
    Dolez, P. I. (2015). Chapter 1.1—Nanomaterials Definitions, Classifications, and Applications. In P. I. Dolez (Ed.), Nanoengineering (pp. 3–40). Elsevier. https://doi.org/10.1016/B978-0-444-62747-6.00001-4
    Dumont, E., Johnson, A. C., Keller, V. D. J., & Williams, R. J. (2015). Nano silver and nano zinc-oxide in surface waters – Exposure estimation for Europe at high spatial and temporal resolution. Environmental Pollution, 196, 341–349. https://doi.org/10.1016/j.envpol.2014.10.022
    ECHA. (2016). Guidance on Information Requirements and Chemical Safety Assessment Chapter R.16: Environmental Exposure Assessment, Version 3.0—February 2016. European Chemicals Agency (ECHA).
    Elimelech, M., Gregory, J., Jia, X., & Williams, R. A. (Eds.). (1995). Front Matter. In Particle Deposition & Aggregation (p. iii). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-7506-7024-1.50019-4
    Environmental & GeoInformatic Technology Co., Ltd. (2023). Environmental Water Quality Information. https://wq.moenv.gov.tw/EWQP/en/Default.aspx
    European Comission. (2022). Comission Recommendation of 10 Juni 2022 of the Definition of Nanomaterial. Official Journal of the European Union, 2022/C 229/01.
    European Commission. (2024). EU trade relations with Taiwan. https://policy.trade.ec.europa.eu/eu-trade-relationships-country-and-region/countries-and-regions/taiwan_en
    Executive Yuan. (2015). The Republic of China Yearbook 2015 (pp. 40–53).
    Fanourakis, S. K., Peña-Bahamonde, J., Bandara, P. C., & Rodrigues, D. F. (2020). Nano-based adsorbent and photocatalyst use for pharmaceutical contaminant removal during indirect potable water reuse. Npj Clean Water, 3(1), 1. https://doi.org/10.1038/s41545-019-0048-8
    Farooq, U., Phul, R., Alshehri, S. M., Ahmed, J., & Ahmad, T. (2019). Electrocatalytic and Enhanced Photocatalytic Applications of Sodium Niobate Nanoparticles Developed by Citrate Precursor Route. Scientific Reports, 9(1), 4488. https://doi.org/10.1038/s41598-019-40745-w
    Franklin, N. M., Rogers, N. J., Apte, S. C., Batley, G. E., Gadd, G. E., & Casey, P. S. (2007). Comparative Toxicity of Nanoparticulate ZnO, Bulk ZnO, and ZnCl2 to a Freshwater Microalga (Pseudokirchneriella subcapitata): The Importance of Particle Solubility. Environmental Science & Technology, 41(24), 8484–8490. https://doi.org/10.1021/es071445r
    Fytianos, G., Rahdar, A., & Kyzas, G. Z. (2020a). Nanomaterials in Cosmetics: Recent Updates. Nanomaterials, 10(5), 979. https://doi.org/10.3390/nano10050979
    Fytianos, G., Rahdar, A., & Kyzas, G. Z. (2020b). Nanomaterials in Cosmetics: Recent Updates. Nanomaterials, 10(5), 979. https://doi.org/10.3390/nano10050979
    Gao, L., Li, D., Ishisaka, J., Zhang, Y., Zong, H., & Guo, L. (2015). Nutrient dynamics across the river-sea interface in the Changjiang (Yangtze River) estuary—East China Sea region. Limnology and Oceanography, 60, 2207–2221. https://doi.org/10.1002/lno.10196
    Garner, K. L., Suh, S., & Keller, A. A. (2017). Assessing the Risk of Engineered Nanomaterials in the Environment: Development and Application of the nanoFate Model. Environmental Science & Technology, 51(10), 5541–5551. https://doi.org/10.1021/acs.est.6b05279
    Geitner, N. K., Bossa, N., & Wiesner, M. R. (2019). Formulation and Validation of a Functional Assay-Driven Model of Nanoparticle Aquatic Transport. Environmental Science & Technology, 53(6), 3104–3109. https://doi.org/10.1021/acs.est.8b06283
    Gottschalk, F., Scholz, R. W., & Nowack, B. (2010). Probabilistic material flow modeling for assessing the environmental exposure to compounds: Methodology and an application to engineered nano-TiO2 particles. Environmental Modelling & Software, 25(3), 320–332. https://doi.org/10.1016/j.envsoft.2009.08.011
    Gottschalk, F., Sonderer, T., Scholz, R. W., & Nowack, B. (2009). Modeled Environmental Concentrations of Engineered Nanomaterials (TiO 2 , ZnO, Ag, CNT, Fullerenes) for Different Regions. Environmental Science & Technology, 43(24), 9216–9222. https://doi.org/10.1021/es9015553
    Guardo, A. D., Gouin, T., MacLeod, M., & Scheringer, M. (2018). Environmental fate and exposure models: Advances and challenges in 21st century chemical risk assessment. Environmental Science: Processes & Impacts, 20(1), 58–71. https://doi.org/10.1039/C7EM00568G
    Guerra, N. B., Bortoluz, J., Bystronski, A. R., Maddalozzo, A. E. D., Restelatto, D., Roesch-Ely, M., Devine, D. M., Giovanela, M., & Crespo, J. S. (2023). Recent Progress on Natural Rubber-Based Materials Containing Metallic and Metal Oxide Nanoparticles: State of the Art and Biomedical Applications. Compounds, 3(2), 310–333. https://doi.org/10.3390/compounds3020023
    Guo, J., Zeng, H., & Chen, Y. (2020). Emerging Nano Drug Delivery Systems Targeting Cancer-Associated Fibroblasts for Improved Antitumor Effect and Tumor Drug Penetration. Molecular Pharmaceutics, 17(4), 1028–1048. https://doi.org/10.1021/acs.molpharmaceut.0c00014
    Han, Y., Knightes, C. D., Bouchard, D., Zepp, R., Avant, B., Hsieh, H.-S., Chang, X., Acrey, B., Matthew Henderson, W., & Spear, J. (2019). Simulating graphene oxide nanomaterial phototransformation and transport in surface water. Environmental Science: Nano, 6(1), 180–194. https://doi.org/10.1039/C8EN01088A
    Harrison, D. M., Briffa, S. M., Mazzonello, A., & Valsami-Jones, E. (2023). A Review of the Aquatic Environmental Transformations of Engineered Nanomaterials. Nanomaterials, 13(14), 2098. https://doi.org/10.3390/nano13142098
    He, D., Garg, S., Wang, Z., Li, L., Rong, H., Ma, X., Li, G., An, T., & Waite, T. D. (2019). Silver sulfide nanoparticles in aqueous environments: Formation, transformation and toxicity. Environmental Science: Nano, 6(6), 1674–1687. https://doi.org/10.1039/C9EN00138G
    Hedberg, J., Blomberg, E., & Odnevall Wallinder, I. (2019). In the Search for Nanospecific Effects of Dissolution of Metallic Nanoparticles at Freshwater-Like Conditions: A Critical Review. Environmental Science & Technology, 53(8), 4030–4044. https://doi.org/10.1021/acs.est.8b05012
    Hendricks, N., Olatunji, O., Ofori, I., & Gumbi, B. P. (2023). Occurrence, fate, and impact of engineered metal/carbonaceous nanomaterials in the environment, detection, and quantitation methods. International Journal of Environmental Science and Technology, 20(11), 12937–12954. https://doi.org/10.1007/s13762-023-04977-8
    Hou, W.-C., BeigzadehMilani, S., Jafvert, C. T., & Zepp, R. G. (2014). Photoreactivity of Unfunctionalized Single-Wall Carbon Nanotubes Involving Hydroxyl Radical: Chiral Dependency and Surface Coating Effect. Environmental Science & Technology, 48(7), 3875–3882. https://doi.org/10.1021/es500013j
    Hou, W.-C., Chowdhury, I., Goodwin, D. G. Jr., Henderson, W. M., Fairbrother, D. H., Bouchard, D., & Zepp, R. G. (2015). Photochemical Transformation of Graphene Oxide in Sunlight. Environmental Science & Technology, 49(6), 3435–3443. https://doi.org/10.1021/es5047155
    Hou, W.-C., Henderson, W. M., Chowdhury, I., Goodwin, D. G., Chang, X., Martin, S., Fairbrother, D. H., Bouchard, D., & Zepp, R. G. (2016). The contribution of indirect photolysis to the degradation of graphene oxide in sunlight. Carbon, 110, 426–437. https://doi.org/10.1016/j.carbon.2016.09.013
    Hou, W.-C., & Huang, S.-H. (2017). Photochemical reactivity of aqueous fullerene clusters: C60 versus C70. Journal of Hazardous Materials, 322, 310–317. https://doi.org/10.1016/j.jhazmat.2016.04.050
    Hou, W.-C., & Jafvert, C. T. (2009). Photochemical Transformation of Aqueous C60 Clusters in Sunlight. Environmental Science & Technology, 43(2), 362–367. https://doi.org/10.1021/es802465z
    Hou, W.-C., Kong, L., Wepasnick, K. A., Zepp, R. G., Fairbrother, D. H., & Jafvert, C. T. (2010). Photochemistry of Aqueous C60 Clusters: Wavelength Dependency and Product Characterization. Environmental Science & Technology, 44(21), 8121–8127. https://doi.org/10.1021/es101230q
    Hou, W.-C., Lee, P.-L., Chou, Y.-C., & Wang, Y.-S. (2017). Antibacterial property of graphene oxide: The role of phototransformation. Environmental Science: Nano, 4(3), 647–657. https://doi.org/10.1039/C6EN00427J
    Hou, W.-C., Stuart, B., Howes, R., & Zepp, R. G. (2013). Sunlight-Driven Reduction of Silver Ions by Natural Organic Matter: Formation and Transformation of Silver Nanoparticles. Environmental Science & Technology, 47(14), 7713–7721. https://doi.org/10.1021/es400802w
    Hou, W.-C., Westerhoff, P., & D. Posner, J. (2013). Biological accumulation of engineered nanomaterials: A review of current knowledge. Environmental Science: Processes & Impacts, 15(1), 103–122. https://doi.org/10.1039/C2EM30686G
    Hsieh, Y.-C., Suhendra, E., Chang, C.-H., & Hou, W.-C. (2023). Dissolution behavior of ZnO nanoparticles at environmentally relevant low concentrations in surface waters: Equilibrium and kinetics. Science of The Total Environment, 888, 164091. https://doi.org/10.1016/j.scitotenv.2023.164091
    Huang, Y., Mei, L., Chen, X., & Wang, Q. (2018). Recent Developments in Food Packaging Based on Nanomaterials. Nanomaterials, 8(10), 830. https://doi.org/10.3390/nano8100830
    Hughes, K. J., Ganesan, M., Tenchov, R., Iyer, K. A., Ralhan, K., Diaz, L. L., Bird, R. E., Ivanov, J., & Zhou, Q. A. (2025). Nanoscience in Action: Unveiling Emerging Trends in Materials and Applications. ACS Omega, 10(8), 7530–7548. https://doi.org/10.1021/acsomega.4c10929
    Hughes, K. J., Iyer, K. A., Bird, R. E., Ivanov, J., Banerjee, S., Georges, G., & Zhou, Q. A. (2024). Review of Carbon Nanotube Research and Development: Materials and Emerging Applications. ACS Applied Nano Materials, 7(16), 18695–18713. https://doi.org/10.1021/acsanm.4c02721
    Jafvert, C. T., & Kulkarni, P. P. (2008). Buckminsterfullerene’s (C60) Octanol−Water Partition Coefficient (Kow) and Aqueous Solubility. Environmental Science & Technology, 42(16), 5945–5950. https://doi.org/10.1021/es702809a
    Jiang, C., Liu, S., Zhang, T., Liu, Q., Alvarez, P. J. J., & Chen, W. (2022). Current Methods and Prospects for Analysis and Characterization of Nanomaterials in the Environment. Environmental Science & Technology, 56(12), 7426–7447. https://doi.org/10.1021/acs.est.1c08011
    Jiang, J., Pi, J., & Cai, J. (2018). The Advancing of Zinc Oxide Nanoparticles for Biomedical Applications. Bioinorganic Chemistry and Applications, 2018, 1–18. https://doi.org/10.1155/2018/1062562
    Johnston, L. J., Gonzalez-Rojano, N., Wilkinson, K. J., & Xing, B. (2020). Key challenges for evaluation of the safety of engineered nanomaterials. NanoImpact, 18, 100219. https://doi.org/10.1016/j.impact.2020.100219
    Kaegi, R., Voegelin, A., Ort, C., Sinnet, B., Thalmann, B., Krismer, J., Hagendorfer, H., Elumelu, M., & Mueller, E. (2013). Fate and transformation of silver nanoparticles in urban wastewater systems. Water Research, 47(12), 3866–3877. https://doi.org/10.1016/j.watres.2012.11.060
    Keller, A. A., Ehrens, A., Zheng, Y., & Nowack, B. (2023). Developing trends in nanomaterials and their environmental implications. Nature Nanotechnology, 18(8), Article 8. https://doi.org/10.1038/s41565-023-01409-z
    Keller, A. A., & Lazareva, A. (2014). Predicted Releases of Engineered Nanomaterials: From Global to Regional to Local. Environmental Science & Technology Letters, 1(1), 65–70. https://doi.org/10.1021/ez400106t
    Keller, A. A., Zheng, Y., Praetorius, A., Quik, J. T. K., & Nowack, B. (2024). Predicting environmental concentrations of nanomaterials for exposure assessment—A review. NanoImpact, 33, 100496. https://doi.org/10.1016/j.impact.2024.100496
    Khan, A. U. H., Liu, Y., Fang, C., Naidu, R., Shon, H. K., Rogers, Z., & Dharmarajan, R. (2023). A comprehensive physicochemical characterization of zinc oxide nanoparticles extracted from sunscreens and wastewaters. Environmental Advances, 12, 100381. https://doi.org/10.1016/j.envadv.2023.100381
    Klein, J. J. M. de, Quik, J. T. K., Bäuerlein, P. S., & Koelmans, A. A. (2016). Towards validation of the NanoDUFLOW nanoparticle fate model for the river Dommel, The Netherlands. Environmental Science: Nano, 3(2), 434–441. https://doi.org/10.1039/C5EN00270B
    Knightes, C. D., Ambrose, R. B., Avant, B., Han, Y., Acrey, B., Bouchard, D. C., Zepp, R., & Wool, T. (2019). Modeling framework for simulating concentrations of solute chemicals, nanoparticles, and solids in surface waters and sediments: WASP8 Advanced Toxicant Module. Environmental Modelling & Software, 111, 444–458. https://doi.org/10.1016/j.envsoft.2018.10.012
    Kołodziejczak-Radzimska, A., & Jesionowski, T. (2014). Zinc Oxide—From Synthesis to Application: A Review. Materials, 7(4), 2833–2881. https://doi.org/10.3390/ma7042833
    Kuenen, J., Pomar-Portillo, V., Vilchez, A., Visschedijk, A., Denier Van Der Gon, H., Vázquez-Campos, S., Nowack, B., & Adam, V. (2020). Inventory of country-specific emissions of engineered nanomaterials throughout the life cycle. Environmental Science: Nano, 7(12), 3824–3839. https://doi.org/10.1039/D0EN00422G
    Landsiedel, R., Ma-Hock, L., Wiench, K., Wohlleben, W., & Sauer, U. G. (2017). Safety assessment of nanomaterials using an advanced decision-making framework, the DF4nanoGrouping. Journal of Nanoparticle Research, 19(5), 171. https://doi.org/10.1007/s11051-017-3850-6
    Lead, J. R., Batley, G. E., Alvarez, P. J. J., Croteau, M.-N., Handy, R. D., McLaughlin, M. J., Judy, J. D., & Schirmer, K. (2018). Nanomaterials in the environment: Behavior, fate, bioavailability, and effects-An updated review: Nanomaterials in the environment. Environmental Toxicology and Chemistry, 37(8), 2029–2063. https://doi.org/10.1002/etc.4147
    Lee, T.-W., Chen, C.-C., & Chen, C. (2019). Chemical Stability and Transformation of Molybdenum Disulfide Nanosheets in Environmental Media. Environmental Science & Technology, 53(11), 6282–6291. https://doi.org/10.1021/acs.est.9b00318
    Li, J., Cui, M., & Zhang, H. (2020). Spatial and temporal variations of antibiotics in a tidal river. Environmental Monitoring and Assessment, 192(6), 336. https://doi.org/10.1007/s10661-020-08313-2
    Li, S.-C., Li, B., & Qin, Z.-J. (2010). The Effect of the Nano-ZnO Concentration on the Mechanical, Antibacterial and Melt Rheological Properties of LLDPE/Modified Nano-ZnO Composite Films. Polymer-Plastics Technology and Engineering, 49(13), 1334–1338. https://doi.org/10.1080/03602559.2010.496431
    Liu, H. H., Bilal, M., Lazareva, A., Keller, A., & Cohen, Y. (2015). Simulation tool for assessing the release and environmental distribution of nanomaterials. Beilstein Journal of Nanotechnology, 6(1), 938–951. https://doi.org/10.3762/bjnano.6.97
    Liu, H. H., & Cohen, Y. (2014). Multimedia Environmental Distribution of Engineered Nanomaterials. Environmental Science & Technology, 48(6), 3281–3292. https://doi.org/10.1021/es405132z
    Liu, J., Pennell, K. G., & Hurt, R. H. (2011). Kinetics and Mechanisms of Nanosilver Oxysulfidation. Environmental Science & Technology, 45(17), 7345–7353. https://doi.org/10.1021/es201539s
    Lu, P.-J., Huang, S.-C., Chen, Y.-P., Chiueh, L.-C., & Shih, D. Y.-C. (2015). Analysis of titanium dioxide and zinc oxide nanoparticles in cosmetics. Journal of Food and Drug Analysis, 23(3), 587–594. https://doi.org/10.1016/j.jfda.2015.02.009
    Luo, C., Ren, X., Dai, Z., Zhang, Y., Qi, X., & Pan, C. (2017). Present Perspectives of Advanced Characterization Techniques in TiO2-Based Photocatalysts. ACS Applied Materials & Interfaces, 9(28), 23265–23286. https://doi.org/10.1021/acsami.7b00496
    Ma, R., Levard, C., Judy, J. D., Unrine, J. M., Durenkamp, M., Martin, B., Jefferson, B., & Lowry, G. V. (2014). Fate of Zinc Oxide and Silver Nanoparticles in a Pilot Wastewater Treatment Plant and in Processed Biosolids. Environmental Science & Technology, 48(1), 104–112. https://doi.org/10.1021/es403646x
    Ma, R., Levard, C., Michel, F. M., Brown, G. E. Jr., & Lowry, G. V. (2013). Sulfidation Mechanism for Zinc Oxide Nanoparticles and the Effect of Sulfidation on Their Solubility. Environmental Science & Technology, 47(6), 2527–2534. https://doi.org/10.1021/es3035347
    Mackay, D. (2001). Multimedia Environmental Models: The Fugacity Approach, Second Edition (2nd ed.). CRC Press. https://doi.org/10.1201/9781420032543
    Malik, S., Muhammad, K., & Waheed, Y. (2023). Nanotechnology: A Revolution in Modern Industry. Molecules, 28(2), 661. https://doi.org/10.3390/molecules28020661
    Markus, A. A., Parsons, J. R., Roex, E. W. M., de Voogt, P., & Laane, R. W. P. M. (2016). Modelling the transport of engineered metallic nanoparticles in the river Rhine. Water Research, 91, 214–224. https://doi.org/10.1016/j.watres.2016.01.003
    Mauter, M. S., Zucker, I., Perreault, F., Werber, J. R., Kim, J.-H., & Elimelech, M. (2018). The role of nanotechnology in tackling global water challenges. Nature Sustainability, 1(4), 166–175. https://doi.org/10.1038/s41893-018-0046-8
    Meesters, J. A. J., Koelmans, A. A., Quik, J. T. K., Hendriks, A. J., & Van De Meent, D. (2014). Multimedia Modeling of Engineered Nanoparticles with SimpleBox4nano: Model Definition and Evaluation. Environmental Science & Technology, 48(10), 5726–5736. https://doi.org/10.1021/es500548h
    Meesters, J. a. J., Peijnenburg, W. J. G. M., Hendriks, A. J., Meent, D. V. de, & Quik, J. T. K. (2019). A model sensitivity analysis to determine the most important physicochemical properties driving environmental fate and exposure of engineered nanoparticles. Environmental Science: Nano, 6(7), 2049–2060. https://doi.org/10.1039/C9EN00117D
    Meesters, J. A. J., Quik, J. T. K., Koelmans, A. A., Hendriks, A. J., & Van De Meent, D. (2016). Multimedia environmental fate and speciation of engineered nanoparticles: A probabilistic modeling approach. Environmental Science: Nano, 3(4), 715–727. https://doi.org/10.1039/C6EN00081A
    Ministry of Economic Affairs, Taiwan. (2023). Industrial Production, Shipment & Inventory Data from the Statistics Division of the Ministry of Economic Affairs, Taiwan. https://dmz26.moea.gov.tw/GMWeb/investigate/InvestigateDB.aspx?lang=E
    Ministry of Finance, Taiwan. (2023). Statistics Database Query about Total Imports/Exports from Customs Administration, Ministry of Finance, Taiwan. https://portal.sw.nat.gov.tw/APGA/GA30E
    MOENV Environmental Water Quality Information Website. (2021). River Monitoring—Environmental Water Quality Information. https://wq.moenv.gov.tw/EWQP/en/EnvWaterMonitoring/River.aspx
    Mostoni, Milana, Credico, D’Arienzo, & Scotti. (2019). Zinc-Based Curing Activators: New Trends for Reducing Zinc Content in Rubber Vulcanization Process. Catalysts, 9(8), 664. https://doi.org/10.3390/catal9080664
    Mueller, N. C., & Nowack, B. (2008). Exposure Modeling of Engineered Nanoparticles in the Environment. Environmental Science & Technology, 42(12), 4447–4453. https://doi.org/10.1021/es7029637
    Nowack, B. (2017). Evaluation of environmental exposure models for engineered nanomaterials in a regulatory context. NanoImpact, 8, 38–47. https://doi.org/10.1016/j.impact.2017.06.005
    Nowack, B., David, R. M., Fissan, H., Morris, H., Shatkin, J. A., Stintz, M., Zepp, R., & Brouwer, D. (2013). Potential release scenarios for carbon nanotubes used in composites. Environment International, 59, 1–11. https://doi.org/10.1016/j.envint.2013.04.003
    Nowack, B., Mueller, N. C., Krug, H. F., & Wick, P. (2014). How to consider engineered nanomaterials in major accident regulations? Environmental Sciences Europe, 26(1), 2. https://doi.org/10.1186/2190-4715-26-2
    Oo, P. Z., Boontanon, S. K., Boontanon, N., Tanaka, S., & Fujii, S. (2021). Horizontal variation of microplastics with tidal fluctuation in the Chao Phraya River Estuary, Thailand. Marine Pollution Bulletin, 173, 112933. https://doi.org/10.1016/j.marpolbul.2021.112933
    Pan-Continental Chemical Co., Ltd. (2023). Zinc Chemicals Manufacturing | Pan-Continental Chemical Co., Ltd. https://www.pcc-chemical.com/zinc-chemicals-manufacturing.html
    Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., Rodriguez-Torres, M. D. P., Acosta-Torres, L. S., Diaz-Torres, L. A., Grillo, R., Swamy, M. K., Sharma, S., Habtemariam, S., & Shin, H.-S. (2018). Nano based drug delivery systems: Recent developments and future prospects. Journal of Nanobiotechnology, 16(1), 71. https://doi.org/10.1186/s12951-018-0392-8
    Petersen, E. J., Huang, Q., & Weber Jr., W. J. (2010). Relevance of octanol–water distribution measurements to the potential ecological uptake of multi-walled carbon nanotubes. Environmental Toxicology and Chemistry, 29(5), 1106–1112. https://doi.org/10.1002/etc.149
    Petosa, A. R., Jaisi, D. P., Quevedo, I. R., Elimelech, M., & Tufenkji, N. (2010). Aggregation and Deposition of Engineered Nanomaterials in Aquatic Environments: Role of Physicochemical Interactions. Environmental Science & Technology, 44(17), 6532–6549. https://doi.org/10.1021/es100598h
    Potter, P. M., Navratilova, J., Rogers, K. R., & Al-Abed, S. R. (2019). Transformation of silver nanoparticle consumer products during simulated usage and disposal. Environmental Science: Nano, 6(2), 592–598. https://doi.org/10.1039/C8EN00958A
    Praetorius, A., Arvidsson, R., Molander, S., & Scheringer, M. (2013a). Facing complexity through informed simplifications: A research agenda for aquatic exposure assessment of nanoparticles. Environmental Science: Processes & Impacts, 15(1), 161–168. https://doi.org/10.1039/C2EM30677H
    Praetorius, A., Arvidsson, R., Molander, S., & Scheringer, M. (2013b). Facing complexity through informed simplifications: A research agenda for aquatic exposure assessment of nanoparticles. Environmental Science: Processes & Impacts, 15(1), 161–168. https://doi.org/10.1039/C2EM30677H
    Praetorius, A., Badetti, E., Brunelli, A., Clavier, A., Gallego-Urrea, J. A., Gondikas, A., Hassellöv, M., Hofmann, T., Mackevica, A., Marcomini, A., Peijnenburg, W., Quik, J. T. K., Seijo, M., Stoll, S., Tepe, N., Walch, H., & von der Kammer, F. (2020a). Strategies for determining heteroaggregation attachment efficiencies of engineered nanoparticles in aquatic environments. Environmental Science: Nano, 7(2), 351–367. https://doi.org/10.1039/C9EN01016E
    Praetorius, A., Badetti, E., Brunelli, A., Clavier, A., Gallego-Urrea, J. A., Gondikas, A., Hassellöv, M., Hofmann, T., Mackevica, A., Marcomini, A., Peijnenburg, W., Quik, J. T. K., Seijo, M., Stoll, S., Tepe, N., Walch, H., & von der Kammer, F. (2020b). Strategies for determining heteroaggregation attachment efficiencies of engineered nanoparticles in aquatic environments. Environmental Science: Nano, 7(2), 351–367. https://doi.org/10.1039/C9EN01016E
    Praetorius, A., Scheringer, M., & Hungerbühler, K. (2012). Development of Environmental Fate Models for Engineered Nanoparticles—A Case Study of TiO2 Nanoparticles in the Rhine River. Environmental Science & Technology, 46(12), 6705–6713. https://doi.org/10.1021/es204530n
    Praetorius, A., Tufenkji, N., Goss, K.-U., Scheringer, M., Kammer, F. von der, & Elimelech, M. (2014). The road to nowhere: Equilibrium partition coefficients for nanoparticles. Environmental Science: Nano, 1(4), 317–323. https://doi.org/10.1039/C4EN00043A
    Praetorius, A., Tufenkji, N., Goss, K.-U., Scheringer, M., von der Kammer, F., & Elimelech, M. (2014). The road to nowhere: Equilibrium partition coefficients for nanoparticles. Environ. Sci.: Nano, 1(4), 317–323. https://doi.org/10.1039/C4EN00043A
    Quik, J. T. K., de Klein, J. J. M., & Koelmans, A. A. (2015). Spatially explicit fate modelling of nanomaterials in natural waters. Water Research, 80, 200–208. https://doi.org/10.1016/j.watres.2015.05.025
    Quik, J. T. K., Stuart, M. C., Wouterse, M., Peijnenburg, W., Hendriks, A. J., & Van De Meent, D. (2012). Natural colloids are the dominant factor in the sedimentation of nanoparticles. Environmental Toxicology and Chemistry, 31(5), 1019–1022. https://doi.org/10.1002/etc.1783
    Quik, J. T. K., Velzeboer, I., Wouterse, M., Koelmans, A. A., & van de Meent, D. (2014). Heteroaggregation and sedimentation rates for nanomaterials in natural waters. Water Research, 48, 269–279. https://doi.org/10.1016/j.watres.2013.09.036
    Raha, S., & Ahmaruzzaman, Md. (2022). ZnO nanostructured materials and their potential applications: Progress, challenges and perspectives. Nanoscale Advances, 4(8), 1868–1925. https://doi.org/10.1039/D1NA00880C
    Reed, R. B., Ladner, D. A., Higgins, C. P., Westerhoff, P., & Ranville, J. F. (2012). Solubility of nano‐zinc oxide in environmentally and biologically important matrices. Environmental Toxicology and Chemistry, 31(1), 93–99. https://doi.org/10.1002/etc.708
    Romeo, D., Salieri, B., Hischier, R., Nowack, B., & Wick, P. (2020). An integrated pathway based on in vitro data for the human hazard assessment of nanomaterials. Environment International, 137, 105505. https://doi.org/10.1016/j.envint.2020.105505
    Ross, B. N., & Knightes, C. D. (2022). Simulation of the Environmental Fate and Transformation of Nano Copper Oxide in a Freshwater Environment. ACS ES&T Water, 2(9), 1532–1543. https://doi.org/10.1021/acsestwater.2c00157
    Saharia, A. M., Zhu, Z., Aich, N., Baalousha, M., & Atkinson, J. F. (2019). Modeling the transport of titanium dioxide nanomaterials from combined sewer overflows in an urban river. Science of The Total Environment, 696, 133904. https://doi.org/10.1016/j.scitotenv.2019.133904
    Sani-Kast, N., Scheringer, M., Slomberg, D., Labille, J., Praetorius, A., Ollivier, P., & Hungerbühler, K. (2015). Addressing the complexity of water chemistry in environmental fate modeling for engineered nanoparticles. Science of The Total Environment, 535, 150–159. https://doi.org/10.1016/j.scitotenv.2014.12.025
    Scheringer, M., Praetorius, A., & Goldberg, E. S. (2014). Chapter 3—Environmental Fate and Exposure Modeling of Nanomaterials. In J. R. Lead & E. Valsami-Jones (Eds.), Frontiers of Nanoscience (Vol. 7, pp. 89–125). Elsevier. https://doi.org/10.1016/B978-0-08-099408-6.00003-7
    Schreyers, L. J., Van Emmerik, T. H. M., Bui, T.-K. L., Van Thi, K. L., Vermeulen, B., Nguyen, H.-Q., Wallerstein, N., Uijlenhoet, R., & Van Der Ploeg, M. (2024). River plastic transport affected by tidal dynamics. Hydrology and Earth System Sciences, 28(3), 589–610. https://doi.org/10.5194/hess-28-589-2024
    Schwirn, K., Voelker, D., Galert, W., Quik, J., & Tietjen, L. (2020). Environmental Risk Assessment of Nanomaterials in the Light of New Obligations Under the REACH Regulation: Which Challenges Remain and How to Approach Them? Integrated Environmental Assessment and Management, 16(5), 706–717. https://doi.org/10.1002/ieam.4267
    Singh, A., Hou, W.-C., Lin, T.-F., & Zepp, R. G. (2019). Roles of Silver–Chloride Complexations in Sunlight-Driven Formation of Silver Nanoparticles. Environmental Science & Technology, 53(19), 11162–11169. https://doi.org/10.1021/acs.est.9b02115
    Singh, R., & Dutta, S. (2018). A review on H2 production through photocatalytic reactions using TiO2/TiO2-assisted catalysts. Fuel, 220, 607–620. https://doi.org/10.1016/j.fuel.2018.02.068
    Solano, R., Patiño-Ruiz, D., & Herrera, A. (2020). Preparation of modified paints with nano-structured additives and its potential applications. Nanomaterials and Nanotechnology, 10, 184798042090918. https://doi.org/10.1177/1847980420909188
    Som, C., Nowack, B., Krug, H. F., & Wick, P. (2013). Toward the Development of Decision Supporting Tools That Can Be Used for Safe Production and Use of Nanomaterials. Accounts of Chemical Research, 46(3), 863–872. https://doi.org/10.1021/ar3000458
    Stegemeier, J. P., Avellan, A., & Lowry, G. V. (2017). Effect of Initial Speciation of Copper- and Silver-Based Nanoparticles on Their Long-Term Fate and Phytoavailability in Freshwater Wetland Mesocosms. Environmental Science & Technology, 51(21), 12114–12122. https://doi.org/10.1021/acs.est.7b02972
    Subhan, M. A., Neogi, N., & Choudhury, K. P. (2022). Industrial Manufacturing Applications of Zinc Oxide Nanomaterials: A Comprehensive Study. Nanomanufacturing, 2(4), 265–291. https://doi.org/10.3390/nanomanufacturing2040016
    Suhendra, E., Chang, C.-H., Hou, W.-C., & Hsieh, Y.-C. (2020a). A Review on the Environmental Fate Models for Predicting the Distribution of Engineered Nanomaterials in Surface Waters. International Journal of Molecular Sciences, 21(12), 4554. https://doi.org/10.3390/ijms21124554
    Suhendra, E., Chang, C.-H., Hou, W.-C., & Hsieh, Y.-C. (2020b). A Review on the Environmental Fate Models for Predicting the Distribution of Engineered Nanomaterials in Surface Waters. International Journal of Molecular Sciences, 21(12), 4554. https://doi.org/10.3390/ijms21124554
    Sun Beam Tech Industrial Co., Ltd., Taiwan. (2024). Product information of ZnO from Sun Beam Tech Industrial Co., Ltd., Taiwan. https://sun-beam-tech-industrial-co-ltd.imexbb.com/
    Sun, T. Y., Bornhöft, N. A., Hungerbühler, K., & Nowack, B. (2016). Dynamic Probabilistic Modeling of Environmental Emissions of Engineered Nanomaterials. Environmental Science & Technology, 50(9), 4701–4711. https://doi.org/10.1021/acs.est.5b05828
    Taiwan’s Ministry of Environment. (2023). Forward-Looking Plan for River Water Quality Management in Southern Taiwan (pp. 4–49 to 4–53) [Project Implementation Report]. Taiwan’s Ministry of Environment. https://epq.moenv.gov.tw/Home/IndexEn
    U.S. Environmental Protection Agency. (2007). Nanotechnology White Paper (Report EPA 100/B-07/001). U.S.EPA.
    Velzeboer, I., Quik, J. T. K., van de Meent, D., & Koelmans, A. A. (2014). Rapid settling of nanoparticles due to heteroaggregation with suspended sediment. Environmental Toxicology and Chemistry, 33(8), 1766–1773. https://doi.org/10.1002/etc.2611
    Vic-Team International Corp. (2024). Product information of ZnO from Vic-Team International Corp. http://www.victeam.com.tw/index.html
    Wang, R., Dang, F., Liu, C., Wang, D., Cui, P., Yan, H., & Zhou, D. (2019). Heteroaggregation and dissolution of silver nanoparticles by iron oxide colloids under environmentally relevant conditions. Environmental Science: Nano, 6(1), 195–206. https://doi.org/10.1039/C8EN00543E
    Wang, S., Zhou, F., Chen, F., Meng, Y., & Zhu, Q. (2021). Spatiotemporal Distribution Characteristics of Nutrients in the Drowned Tidal Inlet under the Influence of Tides: A Case Study of Zhanjiang Bay, China. International Journal of Environmental Research and Public Health, 18(4), 2089. https://doi.org/10.3390/ijerph18042089
    Water Resource Agency (WRA), Taiwan. (2016). 2016 Yanshui River Cross-Section Measurement Report. Sixth River Management Branch, WRA, Kaohsiung, Taiwan.
    Wigger, H., Kägi, R., Wiesner, M., & Nowack, B. (2020). Exposure and Possible Risks of Engineered Nanomaterials in the Environment—Current Knowledge and Directions for the Future. Reviews of Geophysics, 58(4), e2020RG000710. https://doi.org/10.1029/2020RG000710
    Williams, R. J., Harrison, S., Keller, V., Kuenen, J., Lofts, S., Praetorius, A., Svendsen, C., Vermeulen, L. C., & van Wijnen, J. (2019). Models for assessing engineered nanomaterial fate and behaviour in the aquatic environment. Current Opinion in Environmental Sustainability, 36, 105–115. https://doi.org/10.1016/j.cosust.2018.11.002
    Wohlleben, W., Kingston, C., Carter, J., Sahle-Demessie, E., Vázquez-Campos, S., Acrey, B., Chen, C.-Y., Walton, E., Egenolf, H., Müller, P., & Zepp, R. (2017). NanoRelease: Pilot interlaboratory comparison of a weathering protocol applied to resilient and labile polymers with and without embedded carbon nanotubes. Carbon, 113, 346–360. https://doi.org/10.1016/j.carbon.2016.11.011
    Wohlleben, W., & Neubauer, N. (2016). Quantitative rates of release from weathered nanocomposites are determined across 5 orders of magnitude by the matrix, modulated by the embedded nanomaterial. NanoImpact, 1, 39–45. https://doi.org/10.1016/j.impact.2016.01.001
    Wool, T., Ambrose, R. B., Martin, J. L., & Comer, A. (2020). WASP 8: The Next Generation in the 50-year Evolution of USEPA’s Water Quality Model. Water, 12(5), 1398. https://doi.org/10.3390/w12051398
    Xiong, X., Wu, C., Elser, J. J., Mei, Z., & Hao, Y. (2019). Occurrence and fate of microplastic debris in middle and lower reaches of the Yangtze River – From inland to the sea. Science of The Total Environment, 659, 66–73. https://doi.org/10.1016/j.scitotenv.2018.12.313
    Yin, Y., Liu, J., & Jiang, G. (2012). Sunlight-Induced Reduction of Ionic Ag and Au to Metallic Nanoparticles by Dissolved Organic Matter. ACS Nano, 6(9), 7910–7919. https://doi.org/10.1021/nn302293r
    Yokel, R. A., & MacPhail, R. C. (2011). Engineered nanomaterials: Exposures, hazards, and risk prevention. Journal of Occupational Medicine and Toxicology, 6(1), 7. https://doi.org/10.1186/1745-6673-6-7
    Yu, Z., Hu, L., & Lo, I. M. C. (2019). Transport of the arsenic (As)-loaded nano zero-valent iron in groundwater-saturated sand columns: Roles of surface modification and As loading. Chemosphere, 216, 428–436. https://doi.org/10.1016/j.chemosphere.2018.10.125
    Zhang, J., Guo, W., Li, Q., Wang, Z., & Liu, S. (2018). The effects and the potential mechanism of environmental transformation of metal nanoparticles on their toxicity in organisms. Environmental Science: Nano, 5(11), 2482–2499. https://doi.org/10.1039/C8EN00688A
    Zhao, J., Dai, Y., Wang, Z., Ren, W., Wei, Y., Cao, X., & Xing, B. (2018). Toxicity of GO to Freshwater Algae in the Presence of Al2O3 Particles with Different Morphologies: Importance of Heteroaggregation. Environmental Science & Technology, 52(22), 13448–13456. https://doi.org/10.1021/acs.est.8b00815
    Zou, Y., Wang, X., Khan, A., Wang, P., Liu, Y., Alsaedi, A., Hayat, T., & Wang, X. (2016). Environmental Remediation and Application of Nanoscale Zero-Valent Iron and Its Composites for the Removal of Heavy Metal Ions: A Review. Environmental Science & Technology, 50(14), 7290–7304. https://doi.org/10.1021/acs.est.6b01897

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE