| 研究生: |
羅信明 Lo, Hsin-Ming |
|---|---|
| 論文名稱: |
氮化鎵系列高效率發光二極體之研究 The Study of Highly Efficiency Nitride based LEDs |
| 指導教授: |
張守進
Chang, Shoou-Jinn |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 發光效率 |
| 外文關鍵詞: | ITO, GaN |
| 相關次數: | 點閱:59 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中,我們以有機金屬化學汽相沉積系統磊晶成長氮化物材料,並成功研製具有高發光效率與高抗靜電能力之氮化鎵系列發光二極體。
在提高發光效率方面,發光二極體的透明導電層為高穿透率氧化銦錫薄膜,並以ICP乾蝕刻技術將電流最短路近截斷,以提高電子電洞在較遠的P-N接面複合的密度,可以將輸出功率提高6 %左右。相同的理論,在P電極下方沉積一層絕緣層當作電流阻擋層,發光二極體其20 mA輸出功率在有絕緣層與沒有絕緣層分別為3.65 mW and 3.32 mW,而光輸出強度可以提高約7~10 %。另外,我們也在N型氮化鎵磊晶層做奈米柱粗化,在進行ICP乾蝕刻時,發現用不同氣體會有不同蝕刻速率使得不同密度的奈米柱出現,比較有粗化與沒粗化的LED元件,其20 mA時輸出功率時分別為26.74 lm/W and 25.44 lm/W,光輸出強度可提高約12 %。
在改善抗靜電能力方面,因為二極體PN接面特性,順向的靜電衝擊電力可達3000伏特以上,但反向靜電電壓不到300伏特就使得元件損壞,因此,將發光二極體以反向並聯方式做靜電保護,再以覆晶方式來提高其發光亮度。因此覆晶式抗靜電發光二極體在抗靜電能力原本300伏特不到提升至超過1200伏特(HBM),而輸出功率也可以覆晶技術提高約70 %。
In this dissertation, the nitride based epitaxy material was grown by metalorganic chemical vapor deposition (MOCVD). We have succeeded in fabricating highly efficient nitride based light emitting diodes with high electrostatic discharge (ESD) ability.
For increasing the output efficiency of the LED devices, highly transparent Indium-tin-oxide films were used to be the transparent contact layer. In order to increasing spreading path of the electron-hole pairs, ICP dry etching was used to separate the current spreading path. It was found that 6 % output power could be enhanced with ICP dry etching technique. In the same theory, the insulation layer was deposition under the p-pad electrode as the current blocking layer. The 20 mA output power of the LEDs with insulation layer and without insulation layer was 3.65 mA and 3.32 mW, respectively. 7~10 % enhancement of the output intensity could be obtained. In the other way, nano-roughness of n-type GaN epitaxy layers were also applied on the LED devices. It was found that different density of the nano-roughness could be obtained with the different dry etching rate that was due to the different reaction gas. The 20 mA output power was 26.74 lm/W for the LED with nano-roughness and 25.44 lm/W for the LED without nano-roughness. The output intensity was increased about 12 %.
For the improvement of electrostatic discharge, due to the characteristics of the PN junction diode, the forward ESD ability of the LED could be more than 3000 V, however, the LED device was damaged easily by the was less than 300V that reverse electrostatic discharge. In order to avoid the damage of LED from the electrostatic discharge during operation, the LED and an ESD diode are connected in parallel and in reverse. Moreover, flip-chip process was also applied on the LED fabrication for increasing the output brightness. It was found that the electrostatic discharge capability of the flip-chip LED with ESD protection could be greatly improved from 300 V to 1200 V in human body model (HBM). Furthermore, 70 % increase of the output power was also achieved by the flip-chip technique.
chapter 1
[1]S. Nakamura, “High Power GaN p-n Junction Blue Light Emitting Diode”, Jpn. J. Appl. Phys., Vol. 30, pp.1998-2000, 1991.
[2]S. Nakamura, “InGaN-Based Multi-Quantum-Well-Structure Laser Diode”, Jpn. J. Appl. Phys., Vol.35, pp.74, 1996.
[3] M. A. Khan, A Bhattarai, J. N. Kuznia, and D. T. Olson, “High Electron MobilityTransistor Based on a GaN-AlGaN Heterojunction”, Appl. Phys. Lett. Vol. 63,pp.1214-1216, 1993.
[4]Shuji Nakamura, The Blue Laser Diode, Springer, 1997.
[5]Jacques I. Pankove, Theodore D. Moustakas, Gallium Nitride (GaN) / Semiconductorsand Semimetals, Academic Press, Vol. 50, pp.1-6, 1998.
[6] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-emitting diodes,” Appl. Phys. Lett., Vol. 64, pp. 1687-1689, 1994.
[7] I. Eliashevich, Y. Li, A. Osinsky, C. A. Tran, M. G. Browm, and R. F. Karlicek, “ InGaN blue light-emitting diodes with optimized n-GaN layer,” in SPIE CONF.Light-Emitting Diodes: Research, Manufacturing, and Applications- Part III, Vol. 3621, pp. 28-36, 1999.
[8]S. Nakamura, M. Senoh, N. Iwasa and S. Nagahama, Jpn. J. Appl. Phys., Part2, 34,(1995) 797.
[9]S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamade, H. Kiyoko and Y. Sugimoto, Jpn. J. Appl. Phys., 35 (1996) 74.
[10]S. Nakamura, and G. Fasol, The Blue Laser Diode, Springer, Berlin, 1997.
[11]S. D. Lester, M. J. Ludowise, K. P. Killeen, B. H. Perez, J. N. Miller and S. J. Rosner, J. Cryst. Growth, 189 (1998) 786.
[12]W. C. Lai, S. J. Chang, M. Yokoyama, J. K. Sheu and J. F. Chen, IEEE Photon. Technol. Lett., 13 (2001) 559
[13]C. H. Kuo, S. J. Chang, Y K. Su, IEEE Electron. Dev. Lett., 23 (2002) 240.
[14]Y. K. Su, S. J. Chang, C. H. Chen, J. F. Chen, G. C. Chi. J. K. Sheu, W. C. Lai and J. M. Tsai, IEEE Sensors Journal, Vol. 2, pp. 366-371, 2002.
[15]Jong-Wook Seo, Catherine Caneau, Rajaram Bhat and Ilesanmi Adesida, IEEE Photon. Technol. Lett., Vol. 5, pp. 1313-1315, 1993.
[16]J. F. Lin, M. C. Wu, M. J. Jou, C. M. Chang, B. J. Lee and Y. T. Tsai, Electron. Lett., Vol. 30, pp. 1793-1794, 1994.
[17 ]C. L. Chua, R. L. Thornton, D. W. Treat, V. K. Yang and C. C. Dunnrowicz, IEEE Photon. Technol. Lett., Vol. 9, pp. 551-553, 1997.
chapter2
[1] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku and Y. Sugimoto, Jpn. J. Appl. Phys., Vol. 35, pp. L74-L76, 1997.
[2] Z. Fan, S. N. Mohammad, O. Aktas, A. E. Botchkarev, A. Salvador and H. Morkoc: Appl. Phys. Lett., Vol. 69, pp. 1229-1231, 1996.
[3]S. Nakamura, T. Mukai, M. Senoh and N. Iwasa, Jpn. J. Appl. Phys., Vol. 31, pp. L139-L141, 1992.
[4] H. Amano, M. Kito, K. Hiramatsu, N. Sawaki, and I. Akasaki, Jpn. J. Appl. Phys., Vol. 28, No.12, pp. L2112-L2114, 1989.
[5] S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, Jpn. J. Appl. Phys., Vol. 34, No. 7A, pp. L797-L799, 1995.
[6] C. H. Ko, Y K. Su, S. J. Chang, T. M. Kuan, C. I. Chiang, W. H. Lan, W. J. Lin and J. Webb, Jpn. J. Appl. Phys., Vol. 41, No. 4B, pp. 2489-2492, 2002.
[7] J. K. Sheu, C. J. Pan, G. C. Chi, C. H. Kuo, L. W. Wu, C. H. Chen, S. J. Chang and Y. K. Su, IEEE Photon. Technol. Lett., Vol. 14, No. 4, pp. 450-452, 2002.
[8] S. P. DenBaar, B. Y. Maa, P. D. Dapkus and H. C. Lee, “ Homogeneous and heterogeneous thermal decomposition rates of trimethylgallium and arsine and their relevance to the growth of GaAs by MOCVD”, J. Cryst. Growth. Vol. 77, 188(1986)
[9] I.Adessida, A.Mahajan, E.Andideh, M.A.Kahn, D.T.Olson, and
J.N.Kuznia, Appl. Phys. Lett. 63 2777 (1993).
[10] S.J.Pearton, C.R.Abernathy, F.Ren, J.R.Lothian, .Vac.Sci.Technol.
A 111772(1993).
[11] R.J.Shul, G.B.McClellan, S.A.Casalnuovo, D.J.Rieger, Appl. Phys. Lett.69 1119 (1996).
[12] D. S. Wuu, C. R. Chung, Y. H. Liu, R. H. Horng and S. H. Huang, “Deepetch of GaP using high-density plasma for light-emitting
diode applications,” J. Vac. Sci. Technol. B, vol 20, p.902, 2002.
[13] VLSI製造技術 莊達人 編著 高立圖書有限公司
[14] H. Morkoc, “Nitride Semiconductors and Devices”, pp. 168, Springer, 1999.
[15] ESD Association Standard Test Method for electrostatic discharge sensitivity testing-Human Body Model (HBM) Component Level (ANSI/ESD5.1-2001).
chapter3
[1] Eliashevich, Y. Li, A. Osinsky, C. A. Tran, M. G. Brown, and R. F.Karlicek Jr., “InGaN blue light-emitting diodes with optimized n-GaN layer,” in SPIE Conf. Light-Emitting Diodes: Research, Manufacturing, and Applications-Part III, vol. 3621, 1999, pp. 28–36.
[2]H. Kim, J. M. Lee, C. Huh, S. W. Kim, D. J. Kim, S. J. Park, and H. Hwang, “Modeling of a GaN-based light-emitting diode for uniform current spreading,” Appl. Phys. Lett., vol. 77, pp. 1903-1904, 2000.
[3]H. Kim, S. J. Park, and H. Hwang, “Effects of current spreading on the performance of GaN-Based light-emitting diodes,” IEEE Trans. Electron Devices, vol. 48, pp. 1065-1069, June 2001.
[4] H. Kim, S. J. Park, N. M. Park, and H. Hwang, “Lateral current transport path, a model for GaN-based light-emitting diodes: Applications to practical device designs,” Appl. Phys. Lett., vol. 81, pp. 1326-1328, 12 August 2002.
[5] C. S. Chang, S. J. Chang, Y. K. Su, W. S. Chen, C. F. Shen, S. C. Shei and H. M. Lo, Jpn. J. Appl. Phys., Vol.44, No.4B, (2005).
[6] S. J. Chang, C. S. Chang, Y. K. Su, C. T. Lee, W. S. Chen, C. F. Shen, Y.P. Hsu, S. C. Shei1 and H. M. Lo, accepted by IEEE Trans on Advanced Packaging.
[7]C. S. Chang, S. J. Chang, Y. K. Su, W. S. Chen, C. F. Shen, S. C. Shei and H. M. Lo, “Nitride based Power Chip with ITO p-Contact and Al back-side Reflector”, 2004 International Conference on Solid State Devices and Materials, 2004 SSDM
[8]Y. K. Su, S. J. Chang, C. S. Chang, C. H. Kuo, T. K. Ko, C. F. Shen, C. K. Wang, T. K. Lin, S. C. Shei and Y. Z. Chiou, “Nitride based LEDs with Indium-Tin-Oxide as transparent p-contact”, 真空科技學會2003年年會.
[9] Lun Dai, Bei Zhang, J. Y. Lin, and H. X. Jiang: J. Appl. Phys. 89, 4591(2002)
[10] S. X. Jin, J. Li, J. Y. Lin, and H. X. Jiang: Appl. Phys. Lett. 77, 3236(2000)
[11] H. X. Jiang, S. X. Jin, J. Li, J. Shakya, and J. Y. Lin: Appl. Phys. Lett. 78, 1303(2001)
[12] S. X. Jin, J. Shakya, J. Y. Lin, and H. X. Jiang: Appl. Phys. Lett. 78, 3532(2001)
[13] S. X. Jin, J. Li, J. Z. Li, J. Y. Lin, and H. X. Jiang: Appl. Phys. Lett. 76, 631(2000)
[14] T. N. Oder, J. Shakya, J. Y. Lin, and H. X. Jiang: Appl. Phys. Lett. 83, 1231(2003)
[15] H. W. Choi, C. W. Jeon, M. D. Dawson, P. R. Edwards, R. W. Martin, and S. Tripathy: J. Appl. Phys. 93, 5978(2003)
[16] H. W. Choi, C. W. Jeon, M. D. Dawson, P. R. Edwards, and R. W. Martin: IEEE Photonic Tech. L. 15, 510(2003)
[17] Yu Huang, Xiangfeng Duan, Yi Cui, and Charles M. Lieber: Nano Lett. 2, 101(2002)
[18] Hwa-Mok Kim, T.W. Kang, K.S. Chung, J.P. Hong, and W.B. Choi: Chem. Phy. Lett. 377,491(2003)
[19] S. J. Pearton, J. C. Zolper, R. J. Shul and F. Ren: J. Appl. Phys. 86(1999) 1.
[20] Y. H. Lee, Y. J. Sung, G. Y. Yeom, J. W. Lee and T. I. Kim: J. Vac. Sci. Technol. A 18 (2000) 1390.
[21] S. J. Chang, C. S. Chang, Y. K. Su, C. T. Lee, W. S. Chen, C. F. Shen, Y.P. Hsu, S. C. Shei1 and H. M. Lo, accepted by IEEE Trans on Advanced Packaging.
[22] T. Inoue, “Light emitting device”, Japanese Patent H11-040848
[23] S. J. Chang, C.H. Chen, Y. K. Su, Sensior Member, IEEE, J. K. Sheu, W.C. Lai, J. M. Tsai, C. H. Liu, and S.C. Chen, IEEE Electron Device
Letters, Vol. 24, NO. 3, March 2003
[24] T. C. Wen, S. J. Chang, C. T. Lee, W. C. Lai, and J. K. Sheu, IEEE
Transaction on Electron Device, Vol. 51, NO. 10, October 2004
[25] G. Meneghesso, S.Podda, M.Vanzi, Microelectronics reliability 41
(2001) 1609-1614
[26] ESD Association Standard Test Method for electrostatic discharge sensitivity testing-Human Body Model (HBM) Component Level (ANSI/ESD5.1-2001).
校內:2027-02-14公開