簡易檢索 / 詳目顯示

研究生: 李御豪
Li, Yu-Hao
論文名稱: 形成腔體側壁之迴流裝置應用於二氧化碳雪花生成研究
Investigation on Reflux Apparatus on Sidewall of Formation Chamber Applied to Snow Formation of Carbon Dioxide Spray
指導教授: 王覺寬
Wang, Mu-Rong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 91
中文關鍵詞: 二氧化碳雪花清洗團聚機制側管迴流啟動長度
外文關鍵詞: Spray, particle size, CO2 snow, agglomeration, recirculation, sidetube
相關次數: 點閱:124下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討二氧化碳雪花產生裝置在改變不同的形成腔體下,會形成不同的機制與效應。所採用為利用側管之側管探討側迴流之設計,也探討不同側管之參數條件下其對雪花粒徑、生成量及機制之影響。雪花粒徑在初級雪花時期,由Malvern粒子分析儀進行量測,而流場以粒子影像測速儀(PIV)量測,進行流場觀察與噴霧品質診斷。之前(Lin,2014)研究發現啟動長度是隨著管徑大小不同,其啟動長度也隨之改變,啟動長度為令二氧化碳產生有效雪花時所需最短長度的形成腔體,當管徑越大,其啟動長度也會越大,(Lin,2014)發現因為雪花團聚為一個迴流的機制,在啟動長度內需要產生一個迴流流場。而結果也顯示出,雪花形成主要是由於雪花團聚現象所產生,而此研究發現當側管加入,會令形成腔體內部再形成第二個迴流場,而第一個迴流場即是雪花產生時的主要機制,然第二迴流場的影響,也改變了出口處的雪花粒徑大小、速度與密度。若側管設置在形成腔體的啟動長度內,且在約三分之一的啟動長度內,結果顯示,若側管為一個與外界接觸非封閉的條件下,會使雪花的啟動機制受到影響,並讓二氧花碳雪花粒徑退回至初級雪花之大小,而若側管在封閉的條件下,側管會產生迴流機制,但同時也破壞了主迴流場,故側管之長度越長,其雪花粒徑與數量會因而減少。結果也顯示,若側管加裝在三分之二的啟動長度,在開放的條件下,其雪花會介於啟動與非啟動的雪花粒徑大小之間,而在封閉的條件下,若其長度越長,也會略影響主迴流場,而令雪花粒徑略下降,但非完全破壞主迴流機制。當側管加裝在啟動長度下時,開放的側管會使雪花粒徑與啟動時之雪花大小相差不大,但若為封閉的條件下,會引起第二迴流場,並讓雪花在第二迴流場發生團聚現象,進而產生塊狀且密度大的雪花,且側管長度越長,會使雪花的粒徑上升。而此研究也顯示,若在形成腔體下,利用第二迴流場與主迴流場的控制,可以有效的控制雪花粒徑甚至是速度與密度。本實驗亦探討傳統式直管形成腔體與此實驗設計之側壁側管迴流裝置下的形成腔體之雪花生成與轉換率比較,在不同位置下之側管封閉產生迴流區時,雪花生成率亦不同,在啟動長度下之側管迴流機制能使雪花生成率上升約1.5倍,同時此實驗也進一步探討內部流場速度與擾動量,進而探討出新的機制與第二迴流模型。

    Carbon dioxide (CO2) snow jets are widely used in medical and industrial applications, such as cryogenic therapy, food processing, pharmaceutical granulation, particle removal and surface cleaning. In semiconductor fabrication, CO2 snow cleaning has unique organic and particle removal abilities with eco-friendly that are better than those of traditional surface cleaning methods. A model for the agglomeration of CO2 snow particles is derived by our research team this year, and it provide clear evidence of the agglomeration of CO2 snow inside a tube that has never been published in the literature and indeed providing highly opportunity to advance performance of CO2 cleaning. To prolonging the research results of agglomeration mechanism of primary CO2 snow, this research aim at the controlling-technologies of snow particles, include the onset mechanism, onset length of agglomeration of snow particle and designed chambers. By using the additive manufacturing method by 3D printer, complicated design with opened-air chamber configuration and curved surface can easily be realized. This paper experimentally investigates the agglomeration mechanism of CO2 primary particles inside a tube and lateral jet forming a second recirculation. Results show that a complicated particle motion in the upper portion of the tube is responsible for the formation of large snow. By the change of the condition of the flow recirculation area, the snow particles can be controlled and thus ensure the formation of considerable agglomerated particles. Results also show that the onset condition of agglomeration is influenced by the flow condition, as well as the lateral jet.

    目錄 中文摘要 I INVESTIGATION ON REFLUX APPARATUS ON SIDEWALL OF FORMATION CHAMBER APPLIED TO SNOW FORMATION OF CARBON DIOXIDE SPRAY III 誌謝 VI 目錄 VII 圖目錄 X 表目錄 XIII 符號說明 XIV 第一章 緒論 1 1-1 簡介 2 1-2 二氧化碳熱力性質 4 1-3 二氧化碳雪花形成原理 5 1-4 二氧化碳雪花冷凍治療之應用 7 1-5 文獻回顧 7 1-5-1 二氧化碳雪花清洗應用相關研究 7 1-5-2 二氧化碳雪花霧化過程與形成腔體 10 1-5-3 粒子影像測速技術 15 1-6 研究動機與目的 16 第二章 實驗儀器及設備 17 2-1 實驗設備 17 2-1-1 噴霧測試台架與抽氣整流系統 17 2-1-2 高壓液態二氧化碳供應系統 18 2-1-3 高壓液態氮氣供應系統 19 2-1-4 二氧化碳雪花形成裝置與雙層觀測用形成腔體 19 2-1-5 Atom 2.0 3D印表機 24 2-2 量測儀器 26 2-2-1 粒徑量測分析裝置 26 2-2-2 PIV 粒子影像測速儀 28 2-2-3 影像擷取系統 29 2-2-4 主要量測參數 30 2-2-5 二氧化碳雪花生成率之量側設備 31 第三章 實驗方法與條件 33 3-1 工作液體物理特性之量測 33 3-2 二氧化碳雪花流場之視流觀測 33 3-2-1 形成腔體內部迴流觀測 34 3-2-2 形成腔體噴發觀測 34 3-3 二氧化碳雪花流場速度與粒子間速度差異之測量 36 3-4 二氧化碳雪花粒徑量測分析 37 3-4-1 初始後雪花粒徑分析 37 3-4-2 啟動雪花粒徑分析 38 第四章 實驗結果與討論 39 4-1 啟動長度 39 4-2 側管內部機制觀測 40 4-2-1 側管於上游位置觀測 41 4-2-2 側管於下游位置觀測 44 4-3 形成腔體側管設計與雪花粒徑關係 46 4-3-1 形成腔體側管之位置參數變化 47 4-3-2 形成腔體之側管長度與粒徑影響 61 4-4 側管孔徑與雪花粒徑影響 65 4-5 二氧化碳雪花形成腔體內部流場分析 72 4-5-1 腔體側管內部流場分析 72 4-5-2 側管不同位置之速度流場分析 76 4-5-3 側管不同孔徑之速度流場分析 78 4-6 側壁側管迴流裝置與形成腔體設計對二氧化碳雪花生成之探討 80 5-1 結論 82 5-2 未來工作 84 參考文獻 85

    [1] HOENIG, Stuart A. Cleaning surfaces with dry ice. Compressed Air Magazine, 1986, 91.8 22-25.
    [2] HOENIG, S. A. ‘Dry Ice Snow as a Cleaning Media for Hybrids and Integrated Circuits. Hybrid Circuit Technology, 1990, 7: 34.
    [3] YANG, Sheng-Chung; HUANG, Keng-Shiang; LIN, Yu-Cheng. Optimization of a pulsed carbon dioxide snow jet for cleaning CMOS image sensors by using the Taguchi method. Sensors and Actuators A: Physical, 2007, 139.1: 265-271.
    [4] HULSBOSCH-DAM, C. E. C., et al. Assessment of particle size distribution in CO 2 accidental releases. Journal of Loss Prevention in the Process Industries, 2012, 25.2: 254-262.
    [5] SHERMAN, Robert. Carbon dioxide snow cleaning. Particulate Science and Technology, 2007, 25.1: 37-57.
    [6] HILLS, M. M. Carbon dioxide jet spray cleaning of molecular contaminants. Journal of Vacuum Science & Technology A, 1995, 13.1: 30-34.
    [7] BANERJEE, Souvik; CAMPBELL, Andrea. Principles and mechanisms of sub-micrometer particle removal by CO2 cryogenic technique. Journal of Adhesion Science and Technology, 2005, 19.9: 739-751.
    [8] SHERMAN, Robert; GROB, John; WHITLOCK, Walter. Dry surface cleaning using CO2 snow. Journal of Vacuum Science & Technology B, 1991, 9.4: 1970-1977.
    [9] THEERACHAISUPAKIJ, W., et al. Reentrainment of deposited particles by drag and aerosol collision. Journal of Aerosol Science, 2003, 34.3: 261-274.
    [10] YellowBook, 2005 CPR, ‘Yellow Book’ methods for the calculation of physical effects – Due to releases of hazardous materials (liquids and gases), Committee for the Prevention of Disasters (CPR)
    [11] KOLEV, N. I. Fragmentation and coalescence dynamics in multiphase flows. Experimental Thermal and Fluid Science, 1993, 6.3: 211-251.
    [12] 陳軍佑, “Influence of Secondary Atomization on CO2 Snow Jet
    Flow Field,” 中華民國航空太空學會/中華民用航空學會聯合學
    術研討會, 2009.
    [13] LIU, Yi-Hung, et al. Size measurement of dry ice particles produced from liquid carbon dioxide. Journal of Aerosol Science, 2012, 48: 1-9.
    [14] LIN, Tien-Chu; SHEN, Yi-Jun; WANG, Muh-Rong. Agglomeration Processes and Mechanisms of CO2 Snow Inside a Tube. Aerosol Science and Technology, 2014, 48.2: 228-237.
    [15] Lourenco, L. M., Krothapalli, A., and Smith, C. A, “Particle Image
    Velocimetry,” Advances in Fluid Mechanics Measurements, Lecture
    Notes in Engineering-45, Springer-Verlag, pp. 127-200 , 1989.
    [16] Lourenco, L. M., Krothapalli, A., Buchlin, J. M., and Riethmuller, M.
    L, “A Non-Invasive Experimental Technique for the Measurement of
    Unsteady Velocity and Vorticity Fields,” AIAA Jornal, 24, pp.
    1715-1717, 1986.
    [17] Lourenco, L. M., and Krothapalli A, “Stereoscopic and Time Resolved PIV Measurements in High-Speed Flows,” AIAA,
    2180-2194, 2004.
    [18] Raffel, M., Willert, C. E., Kompenhans, J “Particle Image Velocimetry–A Practical Guide,” Springer, ISBN 3-540-63683-8,
    1998.
    [19] Willert, C., Raffel, M., Kompenhans, J., Stasicki, B., and La’’hler, C
    “Recent Applications of Particle Image Velocimetry in Aerodynamic
    Research”, Flow Meas. Instrum., 7(3/4). pp. 247-256, 1996.
    [20] Newbery, A. P., Rayment, T., and Grant, P. S, “A Particle Image
    Velocimetry Investigation of In-Flight and Deposition Behavior of
    Steel Droplets During Electric Arc Sprayforming,” Materials
    Science and Engineering A, 383, pp. 137-145, 2004.
    [21] Adrian, R. J, “Twenty Years of Particle Image Velocimetry,” Experiments in Fluids, 39, pp. 159-169, 2005.
    [22] Menon, M., and Lai, W. T., “Key Considerations in the Selection of
    Seed Particles for LDV measurements,” Laser Anemometry
    Advances and Applications, ASME, pp. 719-730, 1991.
    [23Menon, M., and Lai, W. T., “Key Considerations in the Selection of
    Seed Particles for LDV measurements,” Laser Anemometry
    Advances and Applications, ASME, pp. 719-730, 1991. 127-132, 1994.
    [24] Nishigaki, M., Ippommatsu, M., Ikeda, Y., and Nakajima, T., “New
    High-Performance Tracer Particles for Optical Gas Flow
    Diagnostics,” Meas. Sci. Technol., 3, pp. 619-621, 1992.
    [25] Lee, K. H., Lee, C. H., and Lee, C. S, “An Experimental Study on
    the Spray Behavior and Fuel Distribution of GDI Injectors Using the
    Entropy Analysis and PIV Method,” Fuel, 83, pp. 971-980, 2004.
    [26] Richter, B., Rottenkolber, G., Hehle, M., Dullenkopf, K., and Wittig,
    S., “Investigation of Fuel Sprays by Means of Stereoscopic Particle
    Image Velocimetry and Highspeed Visualization,” ILASS-Europe
    2001, Zurich, 2-6 September, 2001.
    [27] ADHIKARI, Amrit, et al. An experimental study of temperatures in cloud from release of flashing liquid CO2 in 3m long channel. 2014.
    [28] Al-Hakim et al. K. Al-Hakim, G. Wigley, A.G.F. Stapley, Phase doppler anemometry studies of spray freezing.Chemical Engineering Research and Design, 84 (2006), pp. 1142–1151
    [29] ELKOTB, M. M. Fuel atomization for spray modelling. Progress in Energy and Combustion Science, 1982, 8.1: 61-91.
    [30] BOOK, TNO Yellow. Methods for the calculation of physical effects due to releases of hazardous materials (liquids and gases). Committee for the Prevention of Disasters, CRP E, 1997, 14: 870.
    [31] KOLEV, N. I. Fragmentation and coalescence dynamics in multiphase flows. Experimental Thermal and Fluid Science, 1993, 6.3: 211-251.
    [32] RAZZAGHI, Minoo. Droplet size estimation of two-phase flashing jets. Nuclear Engineering and Design, 1989, 114.1: 115-124.
    [33] SHUSSER, M.; WEIHS, D. Explosive boiling of a liquid droplet. International journal of multiphase flow, 1999, 25.8: 1561-1573.
    [34] ZENG, Yangbing; CHIA-FON, F. Lee. Modeling droplet breakup processes under micro-explosion conditions. Proceedings of the Combustion Institute, 2007, 31.2: 2185-2193.
    [35] CLEARY, Vincent; BOWEN, Phil; WITLOX, Henk. Flashing liquid jets and two-phase droplet dispersion: I. Experiments for derivation of droplet atomisation correlations. Journal of Hazardous Materials, 2007, 142.3: 786-796.
    [36] FAETH, G. M.; HSIANG, L.-P.; WU, P.-K. Structure and breakup properties of sprays. International Journal of Multiphase Flow, 1995, 21: 99-127.
    [37] KAY, Peter J.; BOWEN, Phillip J.; WITLOX, Henk WM. Sub-cooled and flashing liquid jets and droplet dispersion II. Scaled experiments and derivation of droplet size correlations. Journal of Loss Prevention in the Process Industries, 2010, 23.6: 849-856.
    [38] HERVIEU, E.; VENEAU, T. Experimental determination of the droplet size and velocity distributions at the exit of the bottom discharge pipe of a liquefied propane storage tank during a sudden blowdown. Journal of Loss Prevention in the Process Industries, 1996, 9.6: 413-425.
    [39] WITLOX, Henk, et al. Flashing liquid jets and two-phase droplet dispersion: II. Comparison and validation of droplet size and rainout formulations. Journal of hazardous materials, 2007, 142.3: 797-809.
    [40] PILCH, M.; ERDMAN, C. A. Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop. International journal of multiphase flow, 1987, 13.6: 741-757.
    [41] HU, Chih-Yuan. 二氧化碳雪花對生物體之冷凍機制及其在內視鏡冷凍治療術之應用. 成功大學航空太空工程學系學位論文, 2012, 1-111.
    [42] Lien, Chun-Han, Designing formation chamber of Carbon Dioxide Snow for Endoscopic Cryotherapy Application
    [49]http://www.co2clean.com/index.html

    下載圖示 校內:2018-07-01公開
    校外:2018-07-01公開
    QR CODE