簡易檢索 / 詳目顯示

研究生: 柯拓宇
Ko, To-yu
論文名稱: 不規則波浪作用下之布拉格共振
Bragg Resonance in Irregular Waves
指導教授: 歐善惠
Ou, Shan-hwei
許泰文
Hsu, Tai-wen
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 70
中文關鍵詞: 布拉格反射系列潛堤反射率不規則波
外文關鍵詞: Bragg reflection, reflection, irregular wave, series of submerged breakwaters
相關次數: 點閱:177下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以往關於系列潛堤之布拉格反射研究,在規則波方面的理論、數值研究與分析都漸趨成熟,而實際應用於海岸保護時需考慮波浪為不規則波,因此本文之重點在於探討不規則波下之布拉格反射。首先在數值分析方面以許等人 (2003) 所發展的演進型緩坡方程式為基礎,並加上波譜分割的概念來模擬不規則波,同時進一步以水工模型試驗驗證數值模式之計算結果。本文同時根據數值和實驗之結果,歸納、探討各種布拉格反射現象可能之影響因子,發現不規則波之情況下,布拉格反射之帶寬較寬,且在複合式間距的潛堤佈置之下,反射效果優於等間距之佈置。

    In this few decades, scholars paid attention to the research of Bragg reflection in regular waves. Thus, this study aimed to discuss the Bragg reflection in irregular waves. EEMSE is a numerical model based on evolution equation for mild-slope equation developed by Hsu et al. (2003). At first, we applied EEMSE to simulate the transformation of irregular waves propagating over the submerged breakwaters by splitting spectrum into several wave components. Meanwhile, we conducted experiments in wave flume and collected wave data from wave gauge. To compare results of numerical model with experimental data, we summarized some characteristics of Bragg reflection. We found that the reflection band is wider in irregular waves than that in regular waves. The reflection coefficient was higher when waves propagated over the composite submerged breakwaters.

    目  錄 中文摘要 I ABSTRACT II 目  錄 III 表 目 錄 V 圖 目 錄 VI 符 號 表 VIII 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 本文組織 7 第二章 理論基礎 8 2.1 緩坡方程式 8 2.1.1 演進型緩坡方程式 8 2.1.2 不規則波之緩坡方程式 11 2.2 不規則波處理方法 12 2.2.1 波譜的分割與合成 12 2.2.2 波譜的選擇 14 2.3 反射率公式 17 第三章 數值模式 22 3.1 數值模式之各項參數 22 3.1.1 能量消散係數 22 3.1.2 非線性淺化效應 23 3.1.3 碎波能量消散係數 24 3.1.4 非線性三波交互作用效應 25 3.2 邊界條件及起始條件 26 3.2.1 邊界條件 26 3.2.2 起始條件 29 3.3 數值方法與收斂條件 30 第四章 模型試驗 32 4.1 試驗設備 32 4.2 試驗配置 36 4.3 試驗規劃 39 4.4 試驗流程 40 第五章 結果與討論 43 5.1 不規則波浪通過複合式矩形潛堤之研究 43 5.1.1 試驗與數值比較 43 5.1.2 入射波譜與透射波譜比較 47 5.2 不規則波通過各式矩形潛堤之研究 50 5.2.1 潛堤個數的影響 51 5.2.2 潛堤高度的影響 53 5.2.3 相對堤寬的影響 55 第六章 結論與建議 58 6.1 結論 58 6.2 建議 59 參考文獻 60 附  錄 67

    1. Battjes, J.A. and Janssen, J.P.F.M., “Energy Loss and Set-up due to Breaking in Random Waves.”, Proceedings of the 16th International Conference on Coastal Engineering, ASCE, Hamburg, Vol. 1, pp. 569 - 578 (1978).
    2. Bailard, J.A., Deveries, J.W., Kirby, J.T., and Guza, R.T., “Bragg Reflection Breakwater:A New Shore Protection Method.”, Proceedings of the 22nd International Conference on Coastal Engineering, ASCE, New York, pp. 1702 - 1715 (1990).
    3. Bailard, J.A., Deveries, J.W., and Kirby, J.T., “Considerations in Using Bragg Reflection for Strom Eroision Protection.”, Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, Vol. 118, pp. 62 - 74 (1992).
    4. Baldock, T.E. and Simmonds, D.J., “Separation of Incident and Reflected Waves over Sloping Bathymetry.”, Coastal Engineering, Vol. 38, pp. 167 - 176 (1999).
    5. Berkhoff, J.C.W., “Computation of Combined Refraction-Diffraction.”, Proceedings of the 13th International Conference on Coastal Engineering, ASCE, Vancouver, Vol. 1, pp. 705 - 720 (1972).
    6. Booij, N., “A Note on the Accuracy of Mild-Slope Equation.”, Coastal Engineering, Vol. 7, pp. 191 - 203 (1983).
    7. Bouws, E., Gnther, H., Rosenthal, W. and Vincent, C.L., “Similarity of the Wind Wave Spectrum in Finite Depth Water. Part 2: Statistical Relations between Shape and Growth Stage.”, Dt. Hydrogr. Z. 40 (1987).
    8. Bretschneider, C.L., ‘‘Significant Waves and Wave Spectrum.’’, Ocean Industry, pp. 40 - 46 (1968).
    9. Chamberlain, P.G. and Poter, D., “The Modified Mild-Slope Equation.”, Journal of Fluid Mechanics, Vol. 291, pp. 393 - 407 (1995).
    10. Davies, A.G. and Heathershaw, A.D., “Surface Wave Propagation over Sinusoidally Varying Topography.”, Journal of Fluid Mechanics, Vol. 144, pp. 419 - 443 (1984).
    11. Davies, A.G., Guazzelli, E., and Belzons, M., “The Propagation over Sinusoidally Varying Topography.”, Physics of Fluids, Vol. 144, A1 (8), pp. 1331 - 1340 (1989).
    12. Dolan, T.J., Wave Mechanics for the Formation of Multiple Longshore Bars with Emphasis on the Chesapeake Bay, Master thesis, Department of Civil Engineering, University of Delaware (1983).
    13. Eldeberky, Y. and Battjes, J.A., “Parameterization of Triad Interactions in Wave Energy Models.”, Proceedings of Coastal Dynamics Conference ’95, Gdansk, Poland, pp. 140 - 148 (1995).
    14. Eldeberky, Y., Nonlinear Transformation of Wave Spectra in the Nearshore Zone, Ph.D. thesis, Department of Civil Engineering, Delft University of Technology, The Netherlands (1996).
    15. Frigaard, P. and Brorsen, M., “A Time-Domain Method for Separating Incident and Reflected Irregular Waves.”, Coastal Engineering, Vol. 24, pp. 205 - 215 (1995).
    16. Goda, Y. and Nagai, K., “Report of the Port and Harbour.”, Res. Inst., No. 61, pp. 64 (1968).
    17. Goda, Y. and Suzuki, Y., “Estimation of Incident and Reflected Waves in Random Wave Experiment.”, Proceedings of the 15th International Conference on Coastal Engineering, ASCE, Hawaii, pp. 628 - 650 (1976).
    18. Goda, Y., “A Comparative Review on the Functional forms of Directional Wave Spectrum.”, Coastal Engineering Journal, Vol. 41, No.1, pp. 1 - 20 (1999).
    19. Guazzelli, E., Rey, V., and Belzons, M., “Higher-Order Bragg Reflection of Gravity Surface Waves by Periodic Beds.”, Journal of Fluid Mechanics, Vol. 245, pp. 301 - 317 (1992).
    20. Hsu, T.W. and Wen, C.C., “A parabolic equation extended to account for rapidly varying topography,” Ocean Engineering, Vol. 28, pp. 1479-1498 (2001)
    21. Hsu, T.W. and Wen, C.C., “A Model Equation Extended to Account for Rapidly Varying Topography.”, Ocean Engineering, Vol. 28, pp. 1479 - 1498 (2001a).
    22. Isobe, M., “A Parabolic Equation Model for Transformation of Irregular Waves due to Refraction, Diffraction and Breaking.”, Coastal Engineering in Japan, Vol. 30, pp. 33 - 47 (1987).
    23. Kimura, A., “The Decomposition of Incident and Reflected Random Wave Envelopes.”, Coastal Engineering in Japan, Vol. 28, pp. 59 - 69 (1985).
    24. Kirby, J.T., “A General Wave Equation for Wave over Rippled Beds.”, Journal Fluid Mechanics, Vol. 162, pp. 171 - 186 (1986).
    25. Kirby, J.T. and Anton, J.P., “Bragg Reflection of Waves by Artificial Bars.”, Proceedings of the 22nd International Conference on Coastal Engineering, ASCE, New York, pp. 757 - 768 (1990).
    26. Li, B., “A Generalized Conjugate Gradient Model for the Mild Slope Equation.”, Costal Engineering, Vol. 23, pp. 215 - 225 (1994).
    27. Longuet-Higgins, M.S., “On the Statistical Distributions of the Height of Sea Waves.”, Journal Marine Research, Vol. IX, No. C5, pp. 245 - 266 (1952).
    28. Madsen, P.A. and Srensen, O.R., “Bound Waves and Triad Interactions in Shallow Water.”, Ocean Engineering, Vol. 20, No. 4, pp. 359 - 388 (1993).
    29. Mansard, E.P.D. and Funke, E.R., “The Measurement of Incident and Reflected Spectra Using a Least Squares Method.”, Proceeding of the 17th International Conference on Coastal Engineering, ASCE, pp. 154 - 172 (1980).
    30. McCowan, J., “On the Highest Wave of Permanent Type.”, Philos. Mag. Edinburgh, Vol. 38, No. 5, pp. 351 - 358 (1894).
    31. Medina, J.R., “Estimation of Incident and Reflected Waves Using Simulated Annealing.”, Journal of Waterway, Port, Costal, and Ocean Engineering, ASCE, Vol. 127, No.4, pp. 213 - 221 (2001).
    32. Mei, C.C., “The Applied Dynamics of Ocean Surface Waves.”, World Scientific, 2nd ed., pp. 135 (1983).
    33. Mei, C.C., “Resonance Reflection of Surface Waves by a Periodic Sandbars.”, Journal of Fluid Mechanics, Vol. 152, pp. 315 - 335 (1985).
    34. Mei, C.C., Hara T., and Naciri, M., “Note on Bragg Scattering of Water Waves by Parallel Bars on the Seabed.”, Journal of Fluid Mechanics, Vol. 186, pp. 147 - 162 (1988).
    35. Miles, J.W., “Oblique Surface-wave Diffraction by a Cylindrical Obstacle.”, Dynamics of Atmospheres and Oceans, Vol. 6, pp. 121 - 123 (1981).
    36. Neumann, G., “On Ocean Wave Spectra and a New Method of Forecasting Wind-Generated Sea.”, Beach Erosion Board. U.S. Army Corps. of Engineers, Tech. Mem., Vol. 43, pp. 42 (1953).
    37. O’Hare, T.J. and Davies, A.G., “A Comparison of Two Models for Surface-wave Propagation over Rapidly Topography.”, Applied Ocean Research, Vol. 15, pp. 1 - 11 (1993).
    38. Pierson, W.J. and Moscowitz, L., “A Proposed Spectral Form for Fully Developed Wind Seas Based on the Similarity Theory of S.A. Kitaigorodskii.”, J. Geophys. Res., Vol. 69, pp. 5181 - 5190 (1964).
    39. Radder, A.C., “On the Parabolic Equation Method for Water Wave Propagation.”, Journal of Fluid Mechanics, Vol. 95, No. 1, pp. 159 - 176 (1979).
    40. Short, A.D., “Multiple Offshore Bars and Standing Waves.”, Journal of Geophysical Research, Vol. 80, pp. 3838 - 3840 (1975).
    41. Shuto, N., “Nonlinear Long Waves in a Channel of Variable Section.”, Coastal Engineering in Japan, Vol. 17, pp. 1 - 12 (1974).
    42. Sommerfeld, A., “Mechanics of Deformable Bodies.”, Vol. 2 of Lectures on Theoretical Physics, Academic Press, New York (1964).
    43. Suh, K.D., Lee, C., and Part, W.S., “Time-Dependent Equations for Wave Propagation on Rapidly Varying Topography.”, Costal Engineering, Vol. 32, pp. 91 - 117 (1997).
    44. Suh, K.D., Park, W.S., and Park, B.S., “Separation of Incident and Reflected Waves in Wave-Current Flumes.”, Coastal Engineering, Vol. 43, pp. 149 - 159 (2001).
    45. Wang, S.-K., Hsu, T.-W., Tsai, L.-H., and Chen, S.-H., “An Application of Miles’ Theory to Bragg Scattering of Water Waves by Doubly Composite Artificial Bars.”, Ocean Engineering, Vol. 33, No.3 - 4, pp. 331 - 349 (2006).
    46. Webster, W.C. and Wehausen, J.V., “Bragg Scattering of Water Waves by Green-Naghdi Theory.”, Z angew Math Phys 46 Special Issue, pp. S566 - S583 (1995).
    47. Zhang, L., Kim, M.H., Zhang, J., and Edge, B.L., “Hybrid Model for Bragg Scattering of Water Waves by Steep Multiply-sinusoidal Bars.”, Journal of Coastal Research, Vol. 15, No. 2, pp. 486 - 495 (1999).
    48. Zhu, S. and Chwang, A.T., “Estimation of Laboratory Wave Reflection by a Transfer Function Method.”, Journal of Engineering Mechanics, Vol. 127, No. 3, pp. 300 - 304 (2001).
    49. 李逸信,「波浪通過人工沙洲之試驗研究」,碩士論文 (1997)
    50. 郭金棟、陳文俊、陳國書,「雙列潛堤對海灘防治效益之研究」,第二十一屆海洋工程研討會論文集,台灣新竹,第 307-313 頁 (1999)。
    51. 岳景雲、曹登皓、陳丙奇,「波浪通過系列潛堤反射係數之研究」,第八屆全國海岸工程學術討論會暨 1997 年海峽兩岸港口及海岸開發研討會論文集(下),中國北京,第 683-690 頁 (1997)。
    52. 岳景雲、曹登皓、陳丙奇,「波浪斜向入射正方形複列潛堤反射係數之研究」, 第二十屆海洋工程研討會論文集,台灣基隆,第 265-272 頁 (1998)。
    53. 岳景雲、曹登皓、江天授、李厚慶,「波浪斜向入射斜坡底床上不透水潛堤之研究」, 第二十一屆海洋工程研討會論文集,台灣新竹, 第 191-197頁 (1999).
    54. 岳景雲、曹登皓、翁文凱,「波浪通過不透水雙列潛堤之研究」,2000兩岸港口及海岸開發研討會論文集,台灣新竹,第 112-118 頁 (2000).
    55. 陳陽益、湯麟武,「波床底床上規則前進重力波之解析」,第十二屆海洋工程研討會論文集,台灣台北,第 270-305 頁 (1990)。
    56. 陳陽益,「波形底床上規則重力波之解析(2)」,港灣技術第六期,第 55-83 頁 (1991a)。
    57. 陳陽益,「自由表面規則前進重力波傳遞於波形底床上共振現象」,第十五屆全國力學會議論文集,台灣台南,第 289-296 頁 (1991b)。
    58. 陳陽益,「規則前進重力波傳遞於波形底床上」,港灣技術第七期,第 17-47 頁 (1992)。
    59. 陳陽益、郭少谷,「三維波形底床上前進波列之傳遞 I」,第二十二屆海洋工程研討會論文集,台灣高雄,第 99-18 頁 (2000)。
    60. 張憲國、許泰文、李逸信,「波浪通過人工沙洲之試驗研究」,第十九屆海洋工程研討會論文集,台灣台中,第 242-249 頁 (1997)。
    61. 鄧秋霞,「以緩坡方程式模擬不規則波之變形」,碩士論文 (2002)
    62. 蔡立宏,「波浪通過系列潛堤之布拉格反射研究」,博士論文 (2003)

    下載圖示 校內:2008-08-17公開
    校外:2008-08-17公開
    QR CODE