簡易檢索 / 詳目顯示

研究生: 傅超群
Fu, Chao-Chun
論文名稱: 電磁感應加熱變動性負載系統之模糊溫度控制器設計
Design of A Fuzzy Temperature Controller for Electromagnetic Induction Heating in Variable Load System
指導教授: 戴政祺
Tai, Cheng-Chi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 102
中文關鍵詞: 電磁熱療負載可變模糊控制器旋轉演算法權重調整
外文關鍵詞: electromagnetic thermotherapy, fluctuating load, fuzzy controller, rotation algorithm, weight adjustment
相關次數: 點閱:90下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文為建立一負載可變之溫度控制器,並應用於電磁熱療系統中,使系統於環境(空氣、血液、組織)以及負載(線圈、針具)變動之情況下,能在短時間內反應並穩定控制在期望溫度上。電磁熱治療過程中,必須有一套穩定且可靠的溫度控制系統來偵測負載(線圈、針具)以及加熱物(病人患部)之狀態並即時進行調整,且當醫師需依照不同患部變換感應線圈大小時,系統皆能安全且穩定的進行溫度控制。本研究係以模糊理論進行演算法之設計,結合電磁熱療系統之加熱特性,於模糊化界面、模糊規則庫以及解模糊化界面等各區塊進行設計,同時搭配旋轉演算法優化模糊規則表,最後於輸出端設計一權重調整機制,進行在線式之判斷與調整,以達到安全且穩定之電磁熱燒灼治療。經實驗證明,本系統於變換線圈內直徑(15 cm以及35 cm)、變動垂直與水平加熱距離(0 cm至5 cm)以及變換入針角度(45 °以及60 °)等情況下,皆能快速升溫並穩定控制於期望溫度上,同時可於系統能力範圍內,藉由設定溫度響應曲線,達到不同之溫升效果,以驗證本文所提出之設計方法與可行性。

    This study intends to establish a temperature controller with variable load for the application to an electromagnetic thermotherapy system so that the system could respond in short time and stabilize on the expected temperature under fluctuating environments (air, blood, tissue) and loads (coil, needle). In the electromagnetic thermotherapy process, a stable and reliable temperature controller system is necessary for detecting the states of loads (coil, needle) and a heated object (patient’s affected area) for real-time adjustment. Besides, when a physician changes the size of the induction coil according to the affected area, the system could safely and stably control the temperature. Fuzzy Theory is utilized in this study for the algorithm design, and the heating characteristic of the electromagnetic thermotherapy system is combined for designing the blocks of fuzzification interface, fuzzy rule base, and defuzzification interface. Meanwhile, the rotation algorithm optimization fuzzy rule table is matched, and a weight adjustment mechanism is designed at the output end for online judgment and adjustment to achieve the safe and stable electromagnetic thermotherapy. The experiment proves that the system, under the situations of changing the coil inner diameter (15 cm and 35 cm), the vertical and horizontal heating distance (0 cm to 5 cm), and angles of needle insertion (45° and 60°), could rapidly rise the temperature and stabilize the expected temperature. Meanwhile, different temperature rising effects could be achieved by setting the temperature response curve within the capability area of the system to prove the design proposed in this study and the practicability.

    摘 要 I Extended Abstract II 誌謝 X 圖目錄 XIV 表目錄 XVIII 第一章 緒論 1 1-1 研究背景 1 1-2 腫瘤熱燒灼治療技術簡介 2 1-3 國內外文獻回顧 4 1-4 研究動機與目的 8 1-5 論文架構 9 第二章 感應加熱系統原理及分析 10 2-1 前言 10 2-2 電磁感應原理 10 2-3 畢奧沙瓦定律 12 2-4 高週波感應加熱系統 15 2-4-1 高週波系統之電路架構 16 2-4-2 高週波系統之全橋串聯諧振電路分析 17 2-4-3 全橋式串聯諧振轉換器之控制 18 第三章 控制器設計 20 3-1 前言 20 3-2 模糊控制系統 20 3-2-1 模糊概念 21 3-2-2 模糊控制器架構 22 3-2-3 模糊控制架構各區塊說明 23 3-2-4 傳統模糊控制器設計 27 3-3 負載可變之模糊溫度控制系統 33 3-3-1 模糊溫度控制器分析 33 3-3-2 負載可變之模糊溫度控制器架構 34 3-3-3 模糊化介面設計 35 3-3-4 模糊規則庫設計 37 3-3-5 模糊輸出增益調整機制(Ku Tuner) 52 第四章 系統架構與實驗結果分析 57 4-1 系統架構 57 4-2 系統硬體 59 4-2-1 閘極隔離驅動電路 59 4-2-2 一次側CT全波整流濾波電路 61 4-2-3 溫度感測電路 63 4-3 系統軟體 64 4-3-1 系統操作流程 64 4-3-2 溫度控制流程 67 4-3-3 人機介面設計 70 4-4 系統性能指標分析 72 4-5 實驗與結論 73 4-5-1 變動線圈內直徑之溫控實驗 73 4-5-2 變動垂直加熱距離溫控實驗 78 4-5-3 變動水平加熱距離溫控實驗 82 4-5-4 變動入針角度溫控實驗 86 4-5-5 設定治療溫度曲線溫控實驗 90 4-5-6 溫度控制實驗總結比較與整理 94 第五章 結論與未來展望 95 5-1 結論 95 5-2 未來展望 96 參考文獻 97 自述 102

    [1] G. Ma, and G. Jiang, "Review of Tumor Hyperthermia Technique in Biomedical Engineering Frontier," 2010 3rd International Conference on Biomedical Engineering and Informatics (BMEI), IEEE, pp. 1357-1359, 2010.
    [2] A. Jordan, P. Wust, H. Fahking, W.John, A. Hinz, and R. Felix, "Inductive Heating of Ferromagnetic Particles and Magnetic Fluids : Physical Evaluation of their Potential for Hyperthermia," Int. J. Hyperthermia, vol. 25, pp. 499-511, 2009.
    [3] B. Thiesen, and A. Jordan, "Clinical Applications of Magnetic Nanoparticles for Hyperthermia" Int. J. Hyperthermia, vol. 24, pp. 467-474, 2008.
    [4] R. Girelli, I. Frigerio, R. Salvia, E. Barbi, P. Tinazzi Martini, and C. Bassi, "Feasibility and Safety of Radiofrequency Ablation for Locally Advanced Pancreatic Cancer," Br J Surg., vol. 97, pp. 220-225, 2010.
    [5] Y. Minami, and M. Kudo, "Radiofrequency Ablation of Hepatocellular Carcinoma: Current Status," World J Radiology, pp. 417-424, 2010.
    [6] R. J. DeWall, T. Varghese, and C. L. Brace, "Quantifying Local Stiffness Variations in Radiofrequency Ablations with Dynamic Indentation," IEEE Trans. Biomed. Eng., vol. 59, pp. 728-735, 2012.
    [7] F. Tascioglu, S. Kuzgun, O. Armagan, and G. Ogutler, "Short-Term Effectiveness of Ultrasound Therapy in Knee Osteoarthritis," Journal of International Medical Research, vol. 38, pp. 1233-1242, 2010.
    [8] A. Giombini, A. Di Cesare, M. Ripani, and N. Maffulli, "Localized Hyperthermia Induced by Microwave Diathermy in Osteoarthritis of the Knee: a Randomized Placebo-Controlled Double-Blind Clinical Trial," Knee Surg. Sports Traumatology Arthroscopy, vol. 19, pp. 980-987, 2011.
    [9] V. Surducan, E. Surducan, R. Ciupa, and C. Neamtu, "Determination of Microwave Generators' Performance for Medical Applications," in Proceedings of the 7th International Symposium on Advanced Topics in Electrical Engineering, Bucharest, Romania, pp. 551-554, 2011.
    [10] Golberg Alexander and Y. L. Martin, "Nonthermal Irreversible Electroporation:Fundamentals, Applications, and Challenges," IEEE Transaction on Biomedical Engineering, vol. 60, no. 3, pp.707-714, 2013.
    [11] Y. Laufer, and G. Dar, "Effectiveness of Thermal and Athermal Short-Wave Diathermy for the Management of Knee Osteoarthritis: a Systematic Review and Meta-Analysis," Osteoarthritis Cartilage, vol. 20, pp. 957-966, 2012.
    [12] A. Burlaka, S. Lukin, S. Prylutska, et al., "Hyperthermic Effect of Multi-Walled Carbon Nanotubes Stimulated with Near Infrared Irradiation for Anticancer Therapy: in Vitro Studies," Experimental Oncology, vol. 32, no. 1, pp. 48-50, 2010.
    [13] X. Z. Lin, R. Zuchini, H. W. Tsai, C. Y. Chen, C. H. Huang, S. C. Huang, et al., "Electromagnetic Thermotherapy Using Fine Needles for Hepatoma Treatment," Eur. J Surg. Oncology, vol. 37, pp. 604-610, 2011.
    [14] S. N. Goldberg, G. S. Gazelle, and P. R. Mueller, "Thermal Ablation Therapy for Focal Malignancy: a Unified Approach to Underlying Principles, Techniques, and Diagnostic Imaging Guidance," AJR Am J Roentgenology, vol. 174, pp. 323-331, 2000.
    [15] R. K. Gilchrist, R. Medal, W. D. Shorey, R. C. Hanselman, J. C. Parrot, C. B. Taylor, "Selective Inductive Heating of Lymph Nodes," Annals of Surgery, Vol. 146, pp. 596-606, October 1957.
    [16] A. Jordan, R. Scholz, P. Wust, H. Fahling, and F. Roland, "Magnetic Fluid Hyperthermia(MFH): Cancer Treatment with AC Magnetic Field Induced Excitation of Biocompatible Superparamagnetic Nanoparticles," Journal of Magnetism and Magnetic Materials, vol. 201, pp. 413-419, 1999.
    [17] A. Jordan, R. Scholz, K. Maier-Hauff, M. Johannsen, P. Wust, J. Nadobny, H. Schirra, H. Schmidt, S. Deger, S. Loening, W. Lanksch, and R. Felix, "Presentation of a New Magnetic Field Therapy System for the Treatment of Human Solid Tumors with Magnetic Fluid Hyperthermia," Journal of Magnetism and Magnetic Materials, vol. 225, pp. 118-126, 2001.
    [18] P. Moroz, S. K. Jones, and B. N. Gray, "Magnetically Mediated Hyperthermia: Current Status and Future Directions," INT. J. Hyperthermia, vol. 18, no. 4, pp. 267-284, 2002.
    [19] C. F. Huang, X. Z. Lin, W. H. Lo, "Design and Construction of a Hyperthermia System with Improved Interaction of Magnetic Induction-Heating," Annual International Conference of the IEEE, Engineering in Medicine and Biology Society (EMBC), pp. 3229-3232, 2010.
    [20] Y. Wang, F. Cao, "Induction Heating Power Supply Temperature Control Based on a Novel Fuzzy Controller," International Conference on Computer and Electrical Engineering 2008.
    [21] C. Cheng, "Design of Fuzzy Controller for Induction Heating Using DSP," in Proc. 5th Conf. on Ind. Elec. and App., pp. 2276-2280, 2010.
    [22] 蕭正昌,「應用於腫瘤熱療之奈米磁粒加熱系統研製」,國立成功大學電機工程學系碩士論文,2006。
    [23] 陳明坤、戴政祺,「半橋式串聯共振變流器於磁性奈米粒子熱療系統之應用」,生物醫學工程科技研討會暨國科會醫學工程學門成果發表會,2006。
    [24] 陳建璋,「半橋串聯共振式磁奈米粒熱療加熱系統研製」,國立成功大學電機工程學系碩士論文,2007。
    [25] 陳建璋、戴政祺,「半橋串聯共振式磁奈米粒熱療加熱系統研製」,生物醫學工程科技研討會暨國科會醫學工程學門成果發表會,2007。
    [26] C. C. Chen, C. C. Tai, J. L. Chen, "The Design of an Applicator and Half-Bridge Series-Resonant Type Heating System for Magnetic Nanoparticle Thermotherapy," IEEE International Magnetics Conference, 2009.
    [27] 陳俊成,「應用於奈米磁粒之半橋串聯諧振式雙頻耦合熱療加熱系統」,國立成功大學電機工程學系碩士論文,2008。
    [28] 孔維彬,「以有限元素分析法作感應加熱線圈分析」,國立成功大學電機工程學系碩士論文,2008。
    [29] 林子翔,「奈米粒熱療加熱系統之中低頻磁場聚焦探頭設計」,國立成功大學電機工程學系碩士論文, 2009。
    [30] 徐彬翔、戴政祺、吳明璋,「高頻感應加熱器之DSP數位控制設計」,生物醫學工程科技研討會暨國科會醫學工程學門成果發表會,2011。
    [31] 陳勁克、戴政祺、游本傳,「以DSP建構數位監控系統於腫瘤電磁熱療加熱器」, 生物醫學工程科技研討會暨國科會醫學工程學門成果發表會,2011。
    [32] 游本傳,「15-kW數位控制式高週波加熱系統之自動頻率追蹤」,國立成功大學電機工程學系碩士論文,2012。
    [33] 曾子庭,「電磁熱療系統之即時數位電流回授控制」,國立成功大學電機工程學系碩士論文,2012。
    [34] 陳仰豪,「多頻段感應加熱系統設計與大電流感測應用」,國立成功大學電機工程學系碩士論文,2012。
    [35] 吳宗勳,「高功率感應加熱系統之數位溫度回授控制電路設計與腫瘤熱療應用」,國立成功大學電機工程學系碩士論文,2013。
    [36] 戴書哲,「電磁熱療系統之自調式模糊溫度控制」,國立成功大學電機工程學系碩士論文,2014。
    [37] 蔡志遠,「電磁感應加熱系統之電路模擬分析與溫度預測模型建置」,國立成功大學電機工程學系碩士論文,2014。
    [38] 林國恩,「電磁熱療系統之自調式模糊溫度控制與調適性網路模糊推論溫度預估模型建置」,國立成功大學電機工程學系碩士論文,2015。
    [39] 許元瑞,「結合類神經網路學習機制與溫度參考曲線模型之模糊溫度控制器於電磁熱療系統之應用」,國立成功大學電機工程學系碩士論文,2016。
    [40] Y. Wang, "Study of Induction Heating Power Supply Based on Fuzzy Controller," The 4th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 726-729, 2009.
    [41] 李永勳,「電磁學」,台灣培生教育出版有限公司,1996。
    [42] 賴耿陽,「高週波工業應用技術」,復漢出版社,1987。
    [43] 陳熹棣,「高週波基礎理論與應用 淬火、微波加熱、電漿、超音波加工」,全華出版社,1995。
    [44] C. Liu, "Frequency Control System Based on PWM," The 3rd IEEE International Conference on Communication Software and Networks(ICCSN), pp. 623-625, 2011.
    [45] Z. Zhang and Z. Tang, "Pulse Frequency Modulation LLC Series Resonant X-ray Power Supply,"The IEEE International Conference on Consumer Electronics, Communications and Networks (CECNet), pp. 16-18, 2011.
    [46] L. A. Zadeh, "Fuzzy Sets," Information and Control, vol. 8, pp. 338-353, 1965.
    [47] L. A. Zadeh, "Outline of a New Approach to the Analysis of Complex Systems and Decision Processes," IEEE Transactions on Systems, Man and Cybernetics, vol. 3, no. 3, pp. 28-44, 1973.
    [48] C. C. Lee, "Fuzzy Logic in Control Systems:Fuzzy Logic Controller, part1," IEEE Transaction on Systems, Man and Cybernetics, vol. 20, no. 2, pp. 404-418, 1990.
    [49] C. C. Lee, "Fuzzy Logic in Control System:Fuzzy Logic Controller, part2," IEEE Transaction on Systems, Man and Cybernetics, vol. 20, no. 2, pp. 419-435, 1990.
    [50] S. Yugang, W. Xueqin, D. Cuijing, S. Yue, 1999, "Fuzzy Control Method with Forward Feedback Integration for Table Furnace," The 38th Annual Conference Proceedings of the SICE Annual, pp. 1193-1197, 1999.
    [51] Y. Park, U. Moon, and K. Y. Lee, "A Self-organizing Fuzzy Logic Controller for Dynamic Systems Using a Fuzzy Auto-Regressive Moving Average(FARMA) Model," IEEE Transactions on Fuzzy Systems, vol. 3, no. 1, pp. 75-82, 1995.
    [52] E. Cerruto, A. Consoli, A. Paciti, and A. Testa, "Fuzzy Adaptive Vector Control of Induction Motor Drives," IEEE Transactions on Power Electronics, vol. 12, no. 6, pp. 1028-1040, 1997.
    [53] F. Betin, A. Sivert, A. Yazidi, and G. A. Capolono, "Determination of Scaling Factors for Fuzzy Logic Control Using the Sliding-Mode Approach Application to Control of a DC Machine Drive," IEEE Transactions on Industrial Electronics, vol. 54, no. 1, pp. 296-309, 2007.
    [54] Y. J. Yoon, Y. J. Lee, T. H. Won, C. S. Kim, and M. H. Lee,"A Study on Design of Fuzzy Logic Control Using Adaptive Scaling Factor," IEEE International Symposium on Industrial Electronics (ISIE), vol. 1, pp. 320-325, 2002.
    [55] J. Victor and A. Dourado, "Adaptive Scaling Factors Algorithm for the Fuzzy Logic Controller," The 6th IEEE international Conference on Fuzzy Systems, vol. 2, pp.1021-1026, 1997.
    [56] " Sieves method in fuzzy control: Logarithmically increase the number of rules," IEEE International Conference on Fuzzy Systems, pp. 1-9, 2015.
    [57] M. H. Zhang, Y. Q. Yu, and B. Zeng "A Genetic-algorithm-and-table-rotating-based Method for Optimizing Fuzzy Control Rules," Proceedings of the 3rd World Congress on Intelligent Control and Automation, vol. 3, pp. 1803-1807, 2000.
    [58] Y. Q. Yu, B. Zeng, G. K. Zhong, X. C. Chen " Rules-table Rotating Method to Rune Fuzzy Control Rules," Control Theory and Applications, vol. 20, no. 5, pp. 779-782, 2003.
    [59] S. C. Wang and Y. H. Liu, "A Modified PI-Like Fuzzy Logic Controller for Switched Reluctance Motor Drives," IEEE Transactions on Industrial Electronics, vol. 58, no. 5, pp. 1812-1825, 2010.

    無法下載圖示 校內:2022-07-26公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE