簡易檢索 / 詳目顯示

研究生: 張少庭
Chang, Shao-Ting
論文名稱: 應用於超低功耗發射機之具誤差補償多相位產生器的分數型頻率合成器
A Fractional-N Frequency Synthesizer with Error Compensated Multi-Phase Generator for Ultra-Low Power Transmitter
指導教授: 鄭光偉
Cheng, Kuang-Wei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 76
中文關鍵詞: 超低功耗發射機頻率合成器相位旋轉器三角積分相位旋轉器多相濾波器雙端石英振盪器
外文關鍵詞: Ultra-low power transmitter, frequency synthesizer, phase rotator, delta-sigma phase rotator, polyphase filter, differential crystal oscillator
相關次數: 點閱:107下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出了一種用於物聯網應用的無線傳感器網絡中超低功耗發射器的頻率合成器。與在載波頻率上進行調製的傳統發射機相比,我們團隊的發射機在較低頻率下實現了頻率合成。通過採用注入鎖定(Injection-Locked)和邊緣組合功率放大器(Edge-Combining Power Amplifiers )進行倍頻,超低功耗發射機可以在433MHz 頻段實現頻移鍵控 (FSK) 調製,同時保持低功耗和低雜訊性能。該合成器通過使用相位旋轉器(Phase rotator)結合三角積分調變器(DSM),實現輸出頻率範圍在41.88MHz至44.5MHz之間。相位旋轉器所需的輸入相位由雙端石英振盪器結合16相位多相濾波器(16-phase Polyphase Filter)產生,並透過使用誤差補償技術減輕多相濾波器的系統相位不平衡,從而實現低功率和低帶內相位噪聲。
    該設計採用90奈米互補式金屬氧化物半導體製程製造,工作電壓為0.8伏特,整體功率消耗為414微瓦。

    This thesis presents a frequency synthesizer for ultra-low-power transmitters in wireless sensor networks for IoT applications. Compared to conventional transmitters that perform modulation at the carrier frequency, our team's transmitter achieves frequency synthesis at a lower frequency. By incorporating injection-locked and edge-combining power amplifiers for frequency multiplying, the ultra-low-power transmitter can achieve frequency shift keying (FSK) modulation in the 433MHz ISM band while maintaining low power consumption and noise performance. The synthesizer combines a phase rotator with a delta-sigma modulator (DSM) to achieve an output frequency range of 41.88MHz to 44.5MHz. The required input phase for the phase rotator is generated by a differential crystal oscillator integrated with a 16-phase polyphase filter. The systematic phase imbalance of the polyphase filter is mitigated using error compensated techniques, resulting in low power and low in-band phase noise.
    The design is implemented in 90nm complementary metal-oxide-semiconductor (CMOS) process, operating at a voltage of 0.8V, with a total power consumption of 414μW.

    List of Figure VIII List of Tables XI Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 2 Chapter 2 Literature Review 3 2.1 Frequency Synthesizer in Ultra Low Power Transmitters 4 2.1.1 PLL Based Frequency Synthesizer 4 2.1.2 Injection-Locked based Frequency Synthesizer 5 2.1.3 Phase Modulator based Frequency Synthesizer 7 2.2 Multi-Phase Generation in Frequency Synthesizer 9 2.2.1 DLL based Multi-Phase Generation 9 2.2.2 Phase Interpolator Based Multi-Phase Generation 9 2.2.3 Passive Component Multi-Phase Generation 10 2.3 Summary 14 Chapter 3 Low Power Transmitter and Fractional-N Frequency Synthesizer 15 3.1 Low Power Transmitter Architecture 15 3.2 Circuit Implements and Simulations 19 3.2.1 Differential Crystal Oscillator 20 3.2.2 16-Phase Polyphase Filter 30 3.2.3 Error Compensated Buffer 38 3.2.4 Phase Rotator 45 3.2.5 Second Order Delta-Sigma Modulator 48 3.3 Power Consumption 50 3.4 Corner Simulation 51 3.5 Noise Analysis 54 Chapter 4 Measurement Results 59 4.1 Test Setup and Measurement Results 59 4.1.1 Differential Crystal Oscillator 62 4.1.2 Frequency Synthesizer 64 4.1.3 Transmitter 68 4.2 Comparison Table 69 Chapter 5 Conclusion and Future Work 72 5.1 Conclusion 72 5.2 Future Work 73 Reference 74

    [1] P.Jacobs, et al. "A 0.35µm CMOS fractional-N transmitter for 315/433/868/915 MHz ISM applications." in ESSCIRC 2004 - 29th European Solid-State Circuits Conference (IEEE Cat. No.03EX705). pp. 425-428 ,2003.
    [2] M. H. Perrott, T.L.T.a.C.G.S., "A 27-mW CMOS fractional-N synthesizer using digital compensation for 2.5-Mb/s GFSK modulation." IEEE Journal of Solid-State Circuits, 1997. 32(12): p. 2048-2060.
    [3] N.Boom, W. Rens, and J. Crols. "A 5.0mW 0dBm FSK transmitter for 315/433 MHz ISM applications in 0.25 μm CMOS." in Proceedings of the 30th European Solid-State Circuits Conference. pp. 199-202, 2004.
    [4] K.Natarajan, D. Gangopadhyay, and D. Allstot. "A PLL-based BFSK transmitter with reconfigurable and PVT-tolerant class-C PA for medradio & ISM (433MHz) standards." in 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC). pp. 67-70, 2013.
    [5] J.Pandey and B.P. Otis, "A Sub-100 µW MICS/ISM Band Transmitter Based on Injection-Locking and Frequency Multiplication." IEEE Journal of Solid-State Circuits, 2011. 46(5): p. 1049-1058.
    [6] K.H.Teng, and C.H. Heng, "A 370-pJ/b Multichannel BFSK/QPSK Transmitter Using Injection-Locked Fractional-N Synthesizer for Wireless Biotelemetry Devices." IEEE Journal of Solid-State Circuits, 2017. 52(3): p. 867-880.
    [7] S.Kalia, et al. "A simple, unified phase noise model for injection-locked oscillators." in IEEE Radio Frequency Integrated Circuits Symposium. 2011.
    [8] K.S.Choi, et al., "A 0.3-to-1-GHz IoT Transmitter Employing Pseudo-Randomized Phase Switching Modulator and Single-Supply Class-G Harmonic Rejection PA."IEEE Journal of Solid-State Circuits, 2022. 57(3): p. 892-905.
    [9] P.E.Su, and S. Pamarti, "A 2.4 GHz Wideband Open-Loop GFSK Transmitter With Phase Quantization Noise Cancellation." IEEE Journal of Solid-State Circuits, 2011. 46(3): p. 615-626.
    [10] N. Nidhi, and S. Pamarti,"Design and Analysis of a 1.8-GHz Open-Loop Modulator for Phase Modulation and Frequency Synthesis Using TDC-Based Calibration." IEEE Transactions on Microwave Theory and Techniques, 2017. 65(10): p. 3975-3988.
    [11] Y.H.Liu, and T.H. Lin, "A Wideband PLL-Based G/FSK Transmitter in 0.18 µm CMOS." IEEE Journal of Solid-State Circuits, 2009. 44(9): p. 2452-2462.
    [12] X.Meng, et al.," A Low-Noise Digital-to-Frequency Converter Based on Injection-Locked Ring Oscillator and Rotated Phase Selection for Fractional- N Frequency Synthesis." IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019. 27(6): p. 1378-1389.
    [13] S.J.Cheng, et al. "A 110pJ/b multichannel FSK/GMSK/QPSK/p/4-DQPSK transmitter with phase-interpolated dual-injection DLL-based synthesizer employing hybrid FIR." in 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers. 2013. P. 450-451
    [14] H.S. Chen, and L.H. Lu, "An Open-Loop Half-Quadrature Hybrid for Multiphase Signals Generation." IEEE Transactions on Microwave Theory and Techniques, 2012. 60(1): p. 131-138.
    [15] D.Liao, , et al.," A 2.4-GHz 16-Phase Sub-Sampling Fractional-N PLL With Robust Soft Loop Switching." IEEE Journal of Solid-State Circuits, 2018. 53(3): p. 715-727.
    [16] S.Mitsuhiro, et al. "An even harmonic image rejection mixer using an eight-phase polyphase filter." in 2008 IEEE MTT-S International Microwave Symposium Digest. 2008. P. 1485-1488
    [17] C.Yan, J. Wu, and C. Hu. "A 370μW Ring VCO Based Injection-Locked Frequency Synthesizer for GPS Receiver". in 2018 3rd International Conference on Computer and Communication Systems (ICCCS). 2018.
    [18] S.Mondal, and D.A. Hall. "A 67-μW Ultra-Low Power PVT-Robust MedRadio Transmitter." in 2020 IEEE Radio Frequency Integrated Circuits Symposium (RFIC). 2020. P. 327-330
    [19] J.Kaukovuori, et al.," Analysis and Design of Passive Polyphase Filters." IEEE Transactions on Circuits and Systems I: Regular Papers, 2008. 55(10): p. 3023-3037.
    [20] H.Chun-Huat, and S. Bang-Sup," A 1.8-GHz CMOS fractional-N frequency synthesizer with randomized multiphase VCO." IEEE Journal of Solid-State Circuits, 2003. 38(6): p. 848-854.
    [21] Y.Chang, et al.,"A Differential Digitally Controlled Crystal Oscillator With a 14-Bit Tuning Resolution and Sine Wave Outputs for Cellular Applications." IEEE Journal of Solid-State Circuits, 2012. 47(2): p. 421-434.
    [22] E.Frerking, M., "Crystal Oscillator Design and Temperature Compensation."1978, New York: Van Nostrand Reinhold Company.
    [23] CTS Crystals datasheet. Available from: https://www.ctscorp.com/connect_product_line/crystals/.
    [24] S.Kulkarni, D. Zhao, and P. Reynaert, "Design of an Optimal Layout Polyphase Filter for Millimeter-Wave Quadrature LO Generation." IEEE Transactions on Circuits and Systems II: Express Briefs, 2013. 60(4): p. 202-206.
    [25] M.S.W.Chen, D. Su, and S. Mehta, "A Calibration-Free 800 MHz Fractional-N Digital PLL With Embedded TDC." IEEE Journal of Solid-State Circuits, 2010. 45(12): p. 2819-2827.
    [26] R.B.Staszewski,et al., "A digitally controlled oscillator in a 90 nm digital CMOS process for mobile phones." IEEE Journal of Solid-State Circuits, 2005. 40(11): p. 2203-2211.
    [27] Y.Guo, et al.,"A 0.66mW 400 MHz/900 MHz Transmitter IC for In-Body Bio-Sensing Applications." IEEE Transactions on Biomedical Circuits and Systems, 2022. 16(2): p. 252-265.
    [28] K.H. Teng, et al., "A 400 MHz Wireless Neural Signal Processing IC With 625 × On-Chip Data Reduction and Reconfigurable BFSK/QPSK Transmitter Based on Sequential Injection Locking." IEEE Transactions on Biomedical Circuits and Systems, 2017. 11(3): p. 547-557.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE