| 研究生: |
林佳慶 Lin, Chia-Ching |
|---|---|
| 論文名稱: |
低功率10位元80MSPS導管式類比/數位轉換器之設計與實作 Design and Implementation of a Low Power 10-bit 80MSPS Pipeline A/D Converter |
| 指導教授: |
郭泰豪
Kuo, Tai-Haur |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 導管式類比/數位轉換器 、類比/數位轉換器 |
| 外文關鍵詞: | ADC, Pipiline ADC |
| 相關次數: | 點閱:70 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在現今信號處理的應用上,隨著可攜式電子產品需求的快速成長,低功率、低成本的類比/數位轉換器於單晶片系統中為一重要的關鍵元件。本論文中,使用TSMC 0.18微米一層多晶矽六層金屬之互補式金氧半製程,提出一個由每級1.5位元組成具有十位元解析度且每秒取樣八千萬次的導管式類比/數位轉換器。為了降低此導管式類比/數位轉換器功率消耗,在設計中,運用了數個能節省功率的技術。省略前端取樣保持電路(Sample-and-Hold, S/H)。在倍乘式數位/類比轉換器中,使用了運算放大器共享技術(Opamp-Sharing Technique)。在針對導管式類比/數位轉換器的電容和運算放大器,運用比例縮小技術(Scaling Technique)。整個十位元的類比/數位轉換器只用了四級的運算放大器,再加上功率消耗在導管式類比/數位轉換器中比例縮小,所以減少整個類比/數位轉換器相當多的功率消耗。
在電路模擬方面,經由HSPICE補助設計軟體驗證結果,這個具十位元解析度每秒取樣八千萬次的導管式類比/數位轉換器,在輸入頻率三千萬赫茲下訊號對雜訊及失真比為57dB,在供應電壓1.8伏特下,整個電路的功率消耗為26mW,晶片的面積為1.33mm2。
For modern signal processing applications, low power, low cost analog-to-digital converter (ADC) is one of the key components in system-on-chip (SOC) with the expanding demand for portable products. In this thesis, a 10-bit 80-MHz pipelined ADC with 1.5-bit/stage architecture has been designed and implemented in the TSMC 0.18-μm 1P6M CMOS process. In order to reduce power consumption of the pipelined ADC, several low power techniques was adapted in circuit design. The front-end sample-and-hold circuit was removed. In multiplying digital-to-analog converter (MDAC), we use opamp-sharing technique and apply scaling technique for capacitor and opamp in pipelined ADC. Only four opamps are adapted, and power consumption of opamps was scaled down in pipelined ADC. So, large amount of pipelined ADC power consumption can be reduced.
The A/D converter is simulated and verified by HSPICE in circuit simulation. The signal-to-noise and distortion ratio (SNDR) of the pipelined ADC is 57dB with sampling frequency of 80MHz at input frequency 30MHz. Power consumption of this ADC is 26mW with 1.8V power supply, and chip area is 1.33mm2.
[1] D.-Y. Chang “Design Techniques for a Pipelined ADC Without Using a Front-End Sample-and-Hold Amplifier” IEEE Transactions on circuits and system—II, Vol. 51, NO. 11, Nov. 2004.
[2] P. C. Yu and H.-S. Lee “A 2.5V 12b 5MSPs Pipelined CMOS ADC” IEEE J. Solid-State Circuits, Vol. 31, NO. 12, Dec. 1996
[3] Y. C., P. R. Gray and Borivoje Nikolic´ “A 14-b 12-MS/s CMOS Pipeline ADC with Over 100-dB SFDR” IEEE J. Solid-State Circuits, Vol. 39, NO. 12, Dec. 2004
[4] B.-M. Min, Senior, P. K., F. W. Bowman, III,D. M. Boisvert and A. J. Aude “A 69-mW 10-bit 80-MSample/s Pipelined CMOS ADC” IEEE J. Solid-State Circuits, Vol. 38, NO. 12, DECEMBER 2003
[5] K. Nagaraj, H. S. Fetterman, J. Anidjar, Stephen H. Lewis and R. G. Renninger “A 250-mW, 8-b, 52-Msamples/s Parallel-Pipelined A/D Converter with Reduced Number of Amplifiers” IEEE J. Solid-State Circuits, Vol. 32, NO. 3, Mar. 1997
[6] S.-T. Ryu, Member, B.-S. Song and K. Bacrania, “A 10-bit 50-MS/s Pipelined ADC with Opamp Current Reuse” IEEE J. Solid-State Circuits, Vol. 42, NO. 3, Mar. 2007
[7] D. W. Cline and P. R. Gray, “A power optimized 13-b 5 Msamples/s pipelined analog-to-digital converter in 1.2 m CMOS,” IEEE J. Solid-State Circuits, vol. 31,pp. 294–303, Mar. 1996.
[8] B.Razavi, “Principles of Data Convertersion System Design,”NJ:IEEE Press,1995.
[9] R. V. D. Plassche, “Integrated Analog-to-Digital and Digital-to-Analog Converters,” Kluwer Academic Publishers, 1994.
[10] B. Razavi, “Principles of Data Conversion system Design,”IEEE PRESS 1995.
[11] C. W. Mangelsdorf, “A 400MHz Input Flash Converter with Error Correction,” IEEE J. Solid-State Circuits, Vol.25, No. 1, Feb.1990,pp.184-191.
[12] K. J. McCall, M. J. Demler, and M. W. Plante, “A 6-bit 125MHz CMOS A/D Converter,”in Proc. CICC, May 1992, pp. 16.8.1-16.8.4.
[13] J. Doernberg, P. R. Gray, and D. A. Hodges, “A 10-bit 5Msample/s CMOS Two-Step Flash ADC,” IEEE J. Solid-State Circuits, Vol. 24, No. 2, Apr. 1999, pp. 241-249.
[14] B. Razavi and B. A. Wooley, “A 12-b 5-Msamples/s Two-Step CMOS ADC,” IEEE J.Solid-State Circuits, Vol. 27, No 12, Dec. 1992, pp.1667-1678.
[15] M. H. Liu and S. I. Liu, “An 8-Bit 10MS/s Folding and Interpolating ADC Using the Continuous-Time Auto-Zero Technique,” IEEE J. Solid-State Circuits, Vol 36, No.1, Jan. 2001, pp. 122-128.
[16] A. M. Abo and P. R. Gray, “A 1.5V 10-bit, 14 MS/s CMOS Pipeline Analog-to-Digital Converter,” VLSI Circuits, 1998. Digest of Technical Papers. Symposium on, 1998
[17] P. C. Yu and H. S. Lee, “A 2.5-V, 12-bit, 5Msamples/s Pipelined CMOS ADC,” IEEE J. Solid-State Circuits, Vol.31, No. 12, Dec. 1996, pp.1854-1861.
[18] B. S. Song, S. H. Lee, and M. F. Tomosett, “A 10-b 15-MHz CMOS Recycling Two-Step A/D Converter” IEEE J. Solid-State Circuits, Vol.25, No.6, Dec. 1990, pp. 1328-1338
[19] P. W. Li, M. J. Chin, P. R. Gray, and R. Castello, “A Radio-Independent Argorithmic Analog-to-Digital Converter,” IEEE J. Solid-State Circuits, Vol. 34, No. 5, May 1999, pp. 599-606.
[20] W. Yang, D. Kelly, I. Mehr, M. T. Sayuk, and L. Singer, “A 3-V 340-mW 14-b 75-Msample/s CMOS ADC with 85-dB SFDR at Nyquist Input,” IEEE J. Solid-State Circuits, vol. 36, pp. 1931-1936, Dec. 2001
[21] S. H. Lweis, “Video-rate analog-to-digital conversion using pipelined architectures,”Ph.D. dissertation, U.C. Berkeley,1987.
[22] Y. M. Lin, “Perfurmance Limitations on High Resolution Video Rate Analog Digital Interfaces, “ Ph.D. dissertation, U.C. Berkeley, 1990.
[23] M. Daito, H. Matsui, M. Ueda and K. Iizuka, “A 14-bit 20-MS/s Pipelined ADC with Digital Distortion Calibration,” IEEE J. Solid-State Circuits, vol. 41, pp. 2417-2423, Nov 2006.
[24] W. Sansen, “Distortion in elementary transistor circuits, “ IEEE Transactions on circuits and systems-II, Analog Digit. Signal Process, vol. 46, pp. 315-325, Mar.1999.
[25] Y. M. Lin, B. Kim, and P. R. Gray, “A 13-b 2.5-MHz self-calibrated pipelined A/D converter in 3u CMOS,” IEEE J. Solid-State Circuits, vol. 26, pp. 628-636, Apr. 1991.
[26] A. N. Karanicolas and H. S. Lee, “A 15-b 1-Msamples/s digitally self-calibrated pipeline ADC, “ IEEE J. Solid-State Circuit, vol. 28, pp. 1207-1215, Dec.1993.
[27] H. C. Liu, Z. M. Lee, and J. T. Wu, “A 15-b 40-MS/s CMOS Pipelined Analog to Digital Converter with digital background calibration,” IEEE J. Solid-State Circuits, vol. 40,pp. 1047-1056, Feb.2004.
[28] C. D. William, “Noise, Speed, and Power Tradeoffs in Pipelined Analog-to-Digital Converters, “Ph.D. dissertation, U.C. Berkeley, 1995.
[29] A. M. Abo and P. R. Gray, “A 1.5-V, 10-bit, 14.3MS/s CMOS Pipeline Analog to Digital Converter,” IEEE J. Solid-State Circuits, vol. 34, pp.599-606, Dec.1999.
[30] Yun Chiu, P. R. Gray, Borivoje Nikolic,”A 14-b 12-MS/s CMOS Pipeline ADC With Over 100-dB SFDR,” IEEE J. Solid-State Circuits, vol.39,pp. 2139-2151, Dec 2004.
[31] T. H. Kuo, K. D. Chen, and H. R. Yeng, “A Wideband CMOS Sigma-Delta Modulator with Incremental Data Weighted Averaging,” IEEE J. Solid-State Circuits, vol. 37, pp.11-17, Jan.2002.
[32] D. A. Johns and K. Martin,” Analog Integrated Circuit Design, John Wiley & Sons, Inc., 1997.
[33] J. Li and U.-K. Moon, “A 1.8V 67mW 10bit 100MS pipelined ADC Using Time Shifted CDS Technique, “IEEE J. Solid-State Circuits, vol. 39, pp. 1468-1476, Spet, 2004.
[34] Imran Ahmed, David A. Johns “A 50MS/s to 1kS/s Power Scaleable 10-bit Pipelined ADC Using Rapid Power-On Opamps and Minimal Bias Current Variation” IEEE Journal of Solid-Stage Circuits, VOL 40 NO 12 December2005
[35] National Semiconductor LM317L 3-Terminal Adjustable Regulator Data Sheet, National Semiconductor, Inc. July 2004.