簡易檢索 / 詳目顯示

研究生: 李嘉安
Li, Chia-An
論文名稱: 新型前十字韌帶固定修補術之生物力學評估: 合併骨釘之骨下縫合固定術
A Biomechanical Evaluation of a New Technique for Anterior Cruciate Ligament Fixation: Subosseous Screw-Suture Anchor Surgery (SSSAS)
指導教授: 蘇芳慶
Su, Fong-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 84
中文關鍵詞: 十字韌帶鬆緊度生物力學比較膝關節運動學
外文關鍵詞: kinematics of knee joint, biomechanics, laxity, cruciate ligament
相關次數: 點閱:63下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 前十字韌帶斷裂是常見的傷害之一,截至目前為止,雖然已有許多治療方法,然而經由手術後膝關節穩定的恢復程度仍不令人滿意。過去文獻指出越穩定的膝關節經受力後,其鬆緊度較不穩定的膝關節要來得緊密,所以能提供良好鬆緊度的手術將是目前臨床上努力的目標之一。然而如此評估項目可能未考慮不同膝關節間先天上鬆緊程度的差異,因此本研究提出鬆緊回復率的評估項目佐以輔助。本研究的目的在於分析前十字韌帶斷裂前後及經兩種不同手術(傳統與創新)修補後的膝關節在受一固定的前後方向力量後,其運動學與力動學上的表現,評估完好、斷裂以及經手術修補後膝關節的鬆緊度、鬆緊回復率和受力情形,並驗證此創新的手術是更有效益更具力學表現更能提供膝關節的穩定度。
    本實驗使用六對健康的成豬膝關節,藉由萬能材料試驗機以及配合夾具的設計, 對實驗樣本於三種前十字韌帶狀況(完整-斷裂-修補)、四種不同的彎曲角度(0°-30°-60°-90°)、三種不同的脛骨旋轉位置(內轉─中間─外轉)進行力學測試。量測受力時間、鬆緊度、力量及力矩;此外對以上每一組變數分別進行單一因子變異數分析檢驗(p=0.05),觀察其完整與術後、傳統與創新手術間的差異。
    實驗結果顯示,經由創新修補手術能提供較良好的鬆緊度,但是在統計上並沒有特別顯著的意義;在鬆緊回復率上,創新修補術亦顯示較高的回復率,且在統計上有顯著意義;不過,於受力情形方面,無法明顯比較出兩種手術間在受力時間和受力期間力量和力矩變化的差異,但由力量-位移圖可以推論越穩定的膝關節將有越穩定的受力情形及越短的受力時間趨勢,本研究中經創新手術方法治療後的樣本有接近韌帶完整時的力量-位移曲線,而經傳統手術方法之樣本的力量-位移曲線與韌帶切斷時接近。
    未來,希望能利用本實驗方式評估膝關節手術的良好與否,並且希望能加強其他評估方式以提供更良好的結果與統計意義,將此創新修補手術延伸應用至身體其它關節韌帶斷裂的部位,以期能改善現有不夠穩定的術後表現。

    Anterior cruciate ligament (ACL) rupture is very common. Till now, the knee stability after surgical operation is still not full satisfactory. A lot of studies indicated that a stable knee would have nearly normal laxity, so providing nearly normal laxity is one of the goals for the surgeons in clinics. The purpose of this study was to evaluate a new innovative surgical technique, subosseous screw-suture anchor surgery (SSSAS), for ACL repair of the knee from biomechanical point of view. Since the knee laxity varies for each individual, “appropriate laxity” is hard to define. Therefore, we propose a possible approach by measuring laxity recovery ratio to assist clinical assessment.

    In this study, we compared the results of traditional and innovative methods in repairing ruptured ACL in terms of kinematics and kinetics measurements. Six pairs of porcine knees were used. One of each pair would be treated using traditional Pullout method, and the other using innovative SSSAS method. We measured time, displacements, applied forces, and moments at four knee flexion angles, 0°, 30°, 60°, and 90°, and three tibial rotation positions, internal, neutral, and external, under three knee conditions, intact, cut, and repaired. Each variable was analyzed utilizing one-way ANOVA at significance level of 0.05 to check if there existed significant differences between two surgical operations.

    The results showed that the SSSAS provided significantly higher laxity recovery ratio. The anterior knee laxity was less for SSSAS although it is not statically significant due to limited sample size. Nevertheless, it was not distinct to differentiate the time to peak force and relative loading period. But with the respect of diagram of force-deformation, the profiles indicated that SSSAS provided more stiffness. The slope of force and displacement was higher. We could suggest that SSSAS provide a stronger force to maintain the complete of the surgical operation and constraint the motion of the knee joint. It may be closer to the stable knee because of the performance of a stable loading trend and a shorter loading period.

    In future, we hope to apply the developed method used in this study to evaluate the recovery of human knee ligament after surgical operation. Moreover, we hope to increase other evaluation to have stronger support to extend this innovative technique to the other joints and hope that it will have a better result in stability after operations.

    Contents Abstract (Chinese)…………….…………………………..………………..…………..…I Abstract…………………………………………………………………………………..III Acknowledgement……………………………………………………………………….. V. Contents…………………………………………………………………………………..Ⅵ List of Tables……………………………………………………………………………VIII List of Figures……………………………………………………………………….........Ⅸ Chapter 1……………………………………………………………………………….1 INTRODUCTION 1.1 Preface…………………………………………………………………………… 1 1.2 Clinical and Literature Review…………………………………………………….. 3 1.2.1 Anatomy…………………………………………………………………… 3 1.2.2 Knee Injury and the Treatment…………………………………………….. 7 1.2.3 Surgical Operations………………………………………………………… 8 1.2.4 Knee Kinematics and the Forces on the ACL……………………………… 9 1.3 Motivations and Purposes………………………………………………………. 13 Chapter 2…………………………………………………………………………………15 MATERIALS AND METHODS 2.1 Specimen Preparation………………….…………………………………………. 15 2.2 Experimental Instrumentation………………………………………………….. 17 2.2.1 Material Testing System………………………………………………….. 17 2.2.2 Clamp…………………………………………………………………….. 19 2.2.3 InstruNet External A/D Box and PC-Card Controller………………….… 21 2.3 Experimental Procedure……………………………………………………..…. 23 2.3.1 Mechanical Testing on the Intact Knee…………………………………... 24 2.3.2 Mechanical Testing on the ACL Sectioning…………………………….... 26 2.3.3 Mechanical Testing on the ACL Surgery……………………………….... 27 2.3.4 Data Collection and Processing………………………………………….. 30 2.3.5 Evaluation of the Specimens after the Mechanical Testing…………….... 31 2.4 Experimental Protocols…………………………………………………………. 31 2.5 Statistical Analysis…………………………………………………………..….. 32 Chapter 3………….…………………………………………………………………….. 33 RESULTS………………………………………………………………………………. 33 3.1 Knee Laxity…………………………………………………………………….… 34 3.1.1 Neutral Position………………………………………………………………. 34 3.1.2 Internal Rotation Position…………………………………………………….. 39 3.1.3 External Rotation Position……………………………………………………. 45 3.1.4 Comparison between Two Surgical Operations……………………………… 50 3.2 Loading History………………………………………………………………..… 54 3.2.1 Time to Peak Force and the Relative Loading Period………………………… 55 3.2.2 Relationship of Displacement-Force-Time between Two Surgical Operations…59 3.3 Evaluation of the Specimens after the Mechanical Testing……………………… 65 Chapter 4………………………………………………………………………………... 66 DISCUSSION 4.1 Anterior Knee Laxity…………………………………………………………….. 66 4.1.1 ACL cut and repair……………………………………………………………. 66 4.1.2 Knee Flexion Angle…………………………………………………………... 67 4.1.3 Tibial Position………………………………………………………………… 67 4.1.4 Conventional v.s. Innovative Techniques…………………………………….. 69 4.2 Comparison with Other Studies………………………………………………….. 69 4.3 Limitations……………………………………………………………………….. 69 Chapter 5………………………………………………………………………………... 72 CONCLUSION REFERENCES………………………………………………...………………………. 74 APPENDIX The Detail Kinematics Data of the Porcine Knee Cadavers ……………………….. 77 List of Tables Table 3.1.a……………………………………………………………………………………35 Tibia in neutral position Table 3.1.b……………………………………………………………………………………36 Tibia in neutral position Table 3.2.a, b…………………………………………………………………………………41 Tibia in internal position Table 3.3.a……………………………………………………………………………………46 Tibia in internal position Table 3.3.b……………………………………………………………………………………47 Tibia in internal position Table 3.4………………………………………………………………………………………53 Check list of the Normal Distribution Table 3.5…………………………………………………………………………………….53 Results of statistical analysis (Mean Knee Laxity) Table 3.6…………………………………………………………………………………….54 Results of statistical analysis (Laxity Recovery Ratio) Table3.7…………………………………………………………………………………..59 Summary of time of peak force and the relative loading period List of Figures Fig.1-1………………………………………………………………………………………4 Anterior view of the knee Fig.1-2………………………………………………………………………………………5 The anatomy of the flexed knee showing the cruciate ligaments Fig.1-3.a…………………………………………………………………………………….5 Drawing of the posterior surface of the tibia (A) and the upper surface of the tibial plateau (B) Fig. 1-3.b……………………………………………………………………………………6 When the knee is extended, both ACL and PCL become taut and help lock the knee into a rigid structure Fig. 1-3.c……………………………………………………………………………………6 When the knee is flexed or extended, the ACL prevents anterior slipping movements of the tibia, whereas the PCL prevents posterior slipping movements Fig. 1-4.a…………………………………………………………………………………..10 Anterior drawer Test Fig. 1-4.b……………………………………………………………………………………..10 Lachman Test Fig.1-4.c Pivot-shift Testing…………………………………………………………………………11 Fig. 2-1………………………………………………………………………………………..15 Approximately 15 cm above and below the knee joint were cut Fig. 2-2………………………………………………………………………………………..16 The skins and the muscles were dissected away, only leaving ligaments, meniscus, and the joint capsules Fig. 2-3……………………………………………………………………………………..16 The tibia were potted with PMMA Fig. 2-4………………………………………………………………………………………..17 The designed aluminum cylinder Fig. 2-5………………………………………………………………………………………..17 The finish of the specimen preparation Fig. 2-6………………………………………………………………………………………..18 Material Testing System Fig. 2-7.a………………………………………………………………………………………19 A six degrees of freedom testing apparatus described by Fleming et al. Fig 2-7.b………………………………………………………………………………………19 The design of the clamp and the completion of the clamp Fig 2-8………………………………………………………………………………………20 The extra force/torque sensor with the tibial yoke attached with a shaft and the completion of the clamp attached with MTS Fig. 2-9……………………………………………………………………………………..…21 The six degrees of freedom of the knee joint Fig. 2-10……………………………………………………………………………………….22 The completion of the extra force/moment senor set-up Fig. 2-11.a………………………………………………………………………………….22 The completion of the specimen preparation and the clamp set-up Fig. 2-11.b………………………………………………………………………………….22 The anterior view of the completion set up Fig. 2-12……………………………………………………………………………………23 The loading process Fig. 2-13.a-e………………………………………………………………………………..25 The set-up of the specimen before testing Fig. 2-14.a………………………………………………………………………………….28 The design of conventional pull-out technique Fig. 2-14.b………………………………………………………………………………….28 The design of SSSAS Fig. 2-15.a………………………………………………………………………………….29 Cut ACL Fig. 2-15.b………………………………………………………………………………….29 Repair ACL in pullout technique Fig. 2-15.c………………………………………………………………………………….29 Repair ACL in SSSAS technique Fig. 3.1……………………………………………………………………………………..36 Mean knee laxity between intact and repaired knees in pullout group Fig. 3.2……………………………………………………………………………………..37 Mean knee laxity between intact and repaired knee in SSSAS group Fig. 3.3……………………………………………………………………………………...37 Mean knee laxity at 4 flexion angles among 3 knee conditions in pullout group Fig. 3.4……………………………………………………………………………………...38 Mean knee laxity at 4 flexion angles among 3 knee conditions in SSSAS group Fig. 3.5……………………………………………………………………………………...38 Mean knee laxity between two surgical techniques Fig. 3.6……………………………………………………………………………………...39 Laxity recovery ratio between two surgical techniques Fig. 3.7……………………………………………………………………………………...42 Mean knee laxity between intact and repaired knee in pullout group Fig. 3.8……………………………………………………………………………………...42 Mean knee laxity between intact and repaired knee in SSSAS group Fig. 3.9…………………………………………………………...…………………………43 Mean knee laxity at 4 flexion angles among 3 knee conditions in pullout group Fig. 3.10……………………………………………………………………………………43 Mean knee laxity at 4 flexion angles among 3 knee conditions in SSSAS Group Fig. 3.11…………………………………………………………………………………….44 Mean knee laxity between two surgical techniques Fig. 3.12……………………………………………………………………………………44 Laxity recovery ratio between two surgical techniques Fig. 3.13……………………………………………………………………………………47 Mean knee laxity between intact and repaired knee in pullout group Fig. 3.14……………………………………………………………………………………48 Mean knee laxity between intact and repaired knee in SSSAS group Fig. 3.15……………………………………………………………………………………48 Mean knee laxity at 4 flexion angles among 3 knee conditions in pullout Group Fig. 3.16……………………………………………………………………………………49 Mean knee laxity at 4 flexion angles among 3 knee conditions in SSSAS Group Fig. 3.17……………………………………………………………………………………49 Mean knee laxity between two surgical techniques Fig. 3.18……………………………………………………………………………………50 Laxity recovery ratio between two surgical techniques Fig. 3.19……………………………………………………………………………………51 Laxity differences between two surgeries in neutral position Fig. 3.20……………………………………………………………………………………51 Laxity differences between two surgeries in internal rotation position Fig. 3.21………………………………………….………………………………………...52 Laxity differences between two surgeries in external rotation position Fig. 3-22.a………………………………………………………………………………….56 Tibia in neutral position Fig. 3-22.b………………………………………………………………………………….56 Tibia in internal position Fig. 3-22.c………………………………………………………………………………….57 Tibia in external position Fig. 3-23.a………………………………………………………………………………….57 ACL-intact Knee Fig. 3-23.b………………………………………………………………………………….58 ACL-cut knee Fig. 3-23.c………………………………………………………………………………….58 ACL-repaired knee Fig.3.24.a ……………………………………………………………………………….60 Diagram of displacement-time between two surgical operations under ACL-intact condition during mechanical testing Fig.3.24.b………………………………………………………………………………..60 Diagram of force-time between two surgical operations under ACL-intact condition during mechanical testing Fig.3.24.c…………………………………………………………………………………..61 Diagram of force-displacement between two surgical operations under ACL-intact condition during mechanical testing Fig.3.25.a ……………………………………………………………………………….61 Diagram of displacement-time between two surgical operations under ACL-cut condition during mechanical testing Fig.3.25.b ……………………………………………………………………………….62 Diagram of force-time between two surgical operations under ACL-cut condition during mechanical testing Fig.3.25.c ………………………………………………………………………………….62 Diagram of force-displacement between two surgical operations under ACL-cut condition during mechanical testing Fig.3.26.a ……………………………………………………………………………….63 Diagram of displacement-time between two surgical operations under ACL-repaired condition during mechanical testing Fig.3.26.b ……………………………………………………………………………….63 Diagram of force-time between two surgical operations under ACL-repaired condition during mechanical testing Fig.3.25.c ………………………………………………………………………………….64 Diagram of force-displacement between two surgical operations under ACL-repaired condition during mechanical testing Fig. 3-27……………………………………………………………………………………65 After the testing-the pullout group vs. the SSSAS group

    REFERENCES

    1. Elaine N. Marieb, Jon Mallatt, Human Anatomy. 3rd edition, Addison Wesley Longman, New York, pp.231-233, 2001.
    2. Savio L.-Y. Woo, Steven D. Abramowitch, Robert Kilger, Rui Liang, Biomechanics of knee ligament: injury, healing, and repair, Journal of Biomechanics- In Press, Corrected Proof, Available online 7 January, 2005.
    3. Savio L.-Y Woo, Richard E Decski, Eric K Wong, Masayoshi Yagi, Danyel Tarinelli, Use of Robotic Technology for Diathrodial Joint Research, Journal of Science and Medicine in Sport, 2(4), pp.283-297, 1999.
    4. Steiner ME, Hecker AT, Brown CH Jr.,Hayes WC., Anterior cruciate ligament graft fixation. Comparison of harmstring and patellar tendon grafts, The American Journal of Sports Medicine, 22(2), pp.240-247, 1994.
    5. Weiler A., Windhagen HJ., Raschke MJ, Laumeyer A., Hoffmann RF., Biodegradable interference screw fixation exhibits pull-out force and stiffness similar to titanium screws, The American Journal of Sports Medicine, 26(1), pp.119-126, 1998.
    6. Brand J. Jr., Weiler A., Caborn DN., Brown CH Jr., Johnson DL., Graft fixation in cruciate ligament reconstruction, The American Journal of Sports Medicine, 28(5), pp.761-774, 2000.
    7. Mortenson RA, Urbaniak JR., Analysis of tensile strength of tendon anastomosis, Surg Forum, 23(0), pp.470-471, 1972.
    8. Kessler I., The grasping technique for tendon repair, Hand, 5(3), pp.253-255, 1973.
    9. Savio L.-Y. Woo, Richard E. Debski, John D. Withrow, Marsie A. Janaushek, Biomechanics of Knee Ligaments, The American Journal of Sports Medicine, 27(4), pp.533-543, 1999.
    10. Arnoczky SP., Warren RF., The Crucial Ligaments. 2nd edition, Churchill Livingstone, New York, pp.269 –287, 1994.
    11. Jae Doo Yoo, Ramprassad Papannagari, Sang Eun Park, Louis E. DeFrate, Thomas J. Gill, Guoan Li, The effect of anterior cruciate ligament reconstruction on knee joint kinematics under simulated muscle loads, The American Journal of Sports Medicine, 33(2), pp.240-246, 2005
    12. Theodore W. Rudy, Masataka Sakane, Richard E. Debski, Savio L.-Y. Woo, The effect of the point of application of anterior tibial loads on human knee kinematics, Journal of Biomechanics, 33, pp.1147-1152, 2000.
    13. John A. Bergfeld, David R. McAlister, Richard D. Parker, Antonio D. C. Valdevit, Helen E. Kambic, A Biomecnanical Comparison of Posterior Cruciate Ligament Reconstruction Techniques, The American Journal of Sports Medicine, 29(2), pp.129-136, 2001.
    14. Akihiro Kanamori, Savio L.-Y. Woo, C. Benjamin Ma, Jennifer Zeminski, B.S., Theodore W. Rudy, Guoan Li, Glen A. Livesay, The forces in the anterior cruciate ligament and knee kinematics during a simulated pivot shift test: A human cadaveric study using robotic technology, The Journal of Arthroscope and Related Surgery, 16(6), pp.633-639, 2000.
    15. Akihiro Kanamori Jennifer Zeminski, Theodore W. Rudy, Guoan Li, Freddie H. Fu, Savio L.-Y. Woo, The effect of axial torque on the function of the anterior cruciate ligament: A biomechanical study of a simulated pivot shift test, The Journal of Arthroscope and Related Surgery, 18(4), pp.394-398, 2002.
    16. Yukihisa Fukuda, Savio L.-Y. Woo, John C. Loh, Eiichi Tsuda, Peter Tang, Patrick J. McMahon, Richard E. Debski, A quantitative analysis of valgus torque on the ACL: a human cadaveric study, Journal of Orthpaedic Reasearch, 21, pp.1107-1112, 2003.
    17. Mary T. Gabriel, Eric K. Wong, Savio L.-Y. Woo, Masayoshi Yagi, Richard E. Debski, Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads, Journal of Orthopaedic Research, 22, pp.85-89, 2004.
    18. Fleming B., Beynnon B., Howe J., Effect of tension and placement of a prosthetic anterior cruciate ligament on the anteroposterior laxity of the knee, Journal of Orthopaedic Research, 10, pp.177-186, 1992.
    19. Markolf KL, Slauterbeck JR, Armstrong KL, A biomechanical study of replacement of the posterior cruciate ligament with a graft. Part I. Isometry, pre-tension of the graft, and anterior-posterior laxity, Journal of Bone and Joint Surgery, 79(A), pp.375-380, 1997.
    20. Su YR. Measurement of knee joint laxity in normal Chinese adults, Graduate Thesis, Institute of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan 1993.
    21. Paul N. Smoth, Kathryn M. Refshauge, Jennifer M. Scarvell, Development of the concepts of knee kinematics, Archives of Physical Medicine and Rehabilitation, 84(6), pp.1897:Fig.4, 2003

    下載圖示 校內:2006-07-15公開
    校外:2006-07-15公開
    QR CODE