| 研究生: |
張凱捷 Chang, Kai-Chieh |
|---|---|
| 論文名稱: |
具多層結構傳輸層及調變主動層之鈣鈦礦太陽能電池 Investigation of Performance Improvement for a Multi-layer Transmission Layer and Modulation of the Active Layer Perovskite Solar Cells |
| 指導教授: |
李清庭
Lee, Ching-Ting |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 正置鈣鈦礦太陽能電池 、三層傳輸層 、FAMA合金主動層 |
| 外文關鍵詞: | Perovskite solar cell, triple-layer transport layer, FAMA active layer |
| 相關次數: | 點閱:54 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文利用射頻磁控濺鍍系統製作氧化鎳/銀/氧化鎳( NiO / Ag / NiO )多層結構傳輸層應用於鈣鈦礦太陽能電池中,在簡單的製程中,多層結構具有良好光學和電學性能,可以有效增加傳輸層的穿透率以及電特性,提高光生電子的比率,使短路電流密度提升,進而改善整體元件轉換效率,實驗結果三層最佳條件為( NiO 30nm / Ag 7 nm / NiO 30 nm),短路電流密度由19.45 mA/cm2提升至20.10 mA/cm2,轉換效率由11.02%提升至11.67%。
製作FAxMA1-xPbI3的合金鈣鈦礦,藉由調配FAI及MAI的比例來增加整體主動層的吸收範圍,隨著FAI加入,較大離子半徑的FAI將使主動層粒徑大小變大,較大的粒徑則可以導致電子電洞對複合減少或載流子擴散長度改善,使主動層能產生更多激子,使得短路電流密度獲得提升,提高整體元件轉換效率,相比其他主動層複雜改變的製程可能會引起鹵化物相分離或薄膜形貌的嚴重變化,材料結構複雜性的增加將使得再現性能方面出現困難,一個較為簡單的結構,則是只使用FA與MA陽離子的鈣鈦礦表現出比MA離子更長的電荷擴散長度和更接近理想值的帶隙。FA離子擁有較大的陽離子半徑,用較大比例的FA時,顆粒平均尺寸上升,容易出現像純 FAPbI3的黃色的非吸光晶相(黃色非鈣磷石δ-FAPbI3),反過來將限制了FAXMA1-XPbI3的性能,因為所得薄膜的結晶性差。實驗結果FA0.1MA0.9PbI3的組合比例為最佳參數,短路電流密度由19.45 mA/cm2提升至22.08 mA/cm2,轉換效率由11.02%提升至12.30%。
最後,結合了氧化鎳/銀/氧化鎳( NiO / Ag / NiO )三層結構最佳條件及 FAxMA1-xPbI3 最佳比例作為正置鈣鈦礦太陽能電池元件,藉由三層傳輸層增加入光量以及主動層吸收增加,短路電流密度由19.45 mA/cm2提升至22.97 mA/cm2,轉換效率由11.02%提升至12.67%。
In this work, we use magnetron sputtering system to deposit nickel oxide, Ag and nickel oxide sequentially on the hole transport layer of the device. Triple-layer transport layer can effective increase the penetration rate and increase the short circuit current density to obtain better performance of perovskite solar cells (IPSCs). The power conversion efficiency (PCE) increased from 11.02% to 11.67%. In addition, we allocate the proportion of the active layer. when the ratio of deployment is FA0.1MA0.9PbI3, The power conversion efficiency (PCE) increases from 11.02% to 12.30%. In combination with triple-layer transport layer with NiO 30 nm / Ag 7 nm / NiO 30 nm and FA0.1MA0.9PbI3 active layer, the best performance of the IPSCs was obtained, and the power conversion efficiency was 12.67%.
第一章
[1] C. Azar, K. Lindgren, and B. A. Andersson, “Global energy scenariosmeeting stringent CO2 constraints-cost-effective fuel choices in the transportation sector,” Energy Policy, vol. 31, pp. 961-976, 2003.
[2] 黃惠良、曾百亨,「太陽電池」,五南圖書出版股份有限公司,2008。
[3] 翁敏航,「太陽能電池-原理、元件、材料、製程與檢測技術」,東華書局,2010。
[4] M. Yamaguchi, “III-V compound multi-junction solar cells:Present andfuture,” Sol. Energy Mater. Sol. Cells., vol. 75, pp. 261-269, 2003.
[5] B. Rech, T. Repmann, M. N. V. D. Donker, M. Berginski, T. Kilper, J. Hüpkes, S. Calnan, H. Stiebig and S. Wieder, “Challenges in microcrystalline silicon based solar cell technology,” Thin Solid Films, vol. 511-512, pp. 548-555, 2006.
[6] K. X. Steirer, J. P. Chesin and N. E. Widjonarko, “Solution deposited NiO thin-films as hole transport layers in organic photovoltaics,” Organic Electronics., vol.11,pp. 1414-1418, 2010.
[7] M. Saliba, J. Y. Seo and M. G. Tzela, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency Energy,” Environ. Sci., vol. 9, pp. 1989-1997, 2016.
[8] B. O'Regan and M. Grӓtzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2,” Nature., vol. 353, pp. 737-740, 1991.
[9] C. W. Tang, “Two-layer organic photovoltaic cell,” Appl. Phys. Lett., vol. 48, pp. 183-185, 1986.
[10] P. Peumans and S. R. Forrest, “Very-high-efficiency doubleheterostructurecopper phthalocyanine/C60 photovoltaic cells,” Appl. Phys. Lett., vol. 79, pp. 126-128, 2001.
[11] J. Tsukamoto, H. Ohigashi, K. Matsumura1 and A. Takahashi1, ‘‘A schottky barrier type solar cell using polyacetylene,’’ Jpn. J. Appl. Phys., vol. 20, pp. 127-129, 1981.
[12] J. C. Hummelen, B. W. Knight, F. LePeq, F. Wudl, J. Yao, and C. L. Wilkins, “Preparation and characterization of fulleroid and methanofullerene derivatives,” J. Org. Chem., vol. 60, pp. 532-538, 1995.
[13] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells:enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science, vol. 270, pp. 1789-1791, 1995.
[14] M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger and C. J. Brabec, “Design rules for donors in bulk-heterojunction solar cells-towards 10% energy-conversion efficiency,” Adv. Mater., vol. 18, pp. 789-794, 2006.
[15] F. S. Chen, “Optically induced charge of refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys., vol. 40, pp. 3389-3396, 1969.
[16] D. Cao, C. Wang, F. Zheng, W. Dong, L. Fang and M. Shen, “High-efficiency ferroelectric-film solar cells with an n-type Cu2O cathode buffer layer,” Nano Lett., vol. 12, pp. 2803-2809, 2012.
[17] A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc., vol. 131, pp. 6050-6051, 2009.
[18] H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Grӓtzel and N. G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9 %,” Sci. Rep., vol. 2, pp. 1-7, 2012.
[19] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science., vol. 338, pp. 643-647, 2008.
[20] 肖立新、鄧德春,「鈣鈦礦太陽電池」,北京大學出版社,2016。
[21] N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfenning, S. Guarnera, A. Haghighirad, A. Sadhanala, C. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herza and H. J. Snaith, “Lead-free organic–inorganic tin halide perovskites for photovoltaic applications,” Energy Environ., vol. 7, pp. 3061-3068, 2014.
[22] D. Weber, “CH3NH3PbX3, ein Pb(II)-system with cubic perovskite structure,” Z. Naturforsch B., vol. 33, pp. 1443-1445, 1978.
第二章
[1] P. Beckmann and A. Spizzichino, “The scattering of electromagnetic waves from rough surfaces,” Publisher: Pergamon Press Oxford, London, New York, Paris, 1963.
[2] H. Hertz, “The photovoltaic effect,” Ann. Phys., vol. 31, pp. 421-983, 1887.
[3] P. Stallinga, “Electronic transport in organic materials:Comparison of bandtheory with percolation / (variable range) hopping theory,” Adv. Mater., vol. 23, pp. 3356-3362, 2011.
[4] K. J. Less and E. G. Wilson, “Intrinsic photoconduction and photoemission in polyethylene,” J. Phys. C. Solid State Phys., vol. 6, pp. 3110-3120, 1973.
[5] 傅聖文,「外應力對可撓式有機太陽能電池之影響」,國立成功大學電機工程研究所碩士論文,2009。
[6] H. Hoppe and N. S. Sariciftci, “Organic solar cells:an overview,” J. Mater. Res., vol. 19, pp. 1924-1945, 2004.
[7] P. K. Nayak, “Exciton binding energy in small organic conjugated molecule,” Synth. Met., vol. 174, pp. 42-45, 2013.
[8] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science., vol. 342, pp. 341-344, 2013.
[9] T. Stübinger and W. Brütting, “Exciton diffusion and optical interference in organic donor-acceptor photovoltaic cells,” J. Appl. Phys., vol. 90, pp. 3632-3641, 2001.
[10] H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Interface engineering of highly efficient perovskite solar cells,” Science, vol. 345, pp. 542-546, 2014.
[11] P. Peumans and S. R. Forrest, “Very-high-efficiency double eterostructure copper phthalocyanine/C60 photovoltaic cells,” Appl. Phys. Lett., vol. 79, pp. 126-128, 2001.
[12] D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A new silicon p‐n junction photocell for converting solar radiation into electrical power,” J. Appl. Phys., vol. 25, pp. 676-678, 1954.
[13] A. Moliton and J. M. Nunzi, “How to model the behaviour of organic photovoltaic cells,” Polym. Int., vol. 55, pp. 583-600, 2006.
[14] J. M. Nunzi, “Organic photovoltaic materials and devices,” C. R. Physique., vol. 3, 2002.
[15] L. Zheng, D. Zhang, Y. Ma, Z. Lu, Z. Chen, S Wang, L Xiao and Q. Gonga, “Morphology control of the perovskite films for efficient solar cells,” Dalton Trans., vol. 44, pp. 10582-10593, 2015.
[16] M. Lv, X. Dong, X. Fang, B. Lin, S. Zhang, J. Ding, and N. Yuan, “A promising alternative solvent of perovskite to induce rapid crystallization for high-efficiency photovoltaic devices,” RSC Adv., vol. 5, pp. 20521-20529, 2015.
[17] K. F. Lin, S. H. Chang, K. H. Wang, H. M. Cheng, K. Y. Chiu, K. M. Lee, S. H. Chen, and C. G. Wu, “Unraveling the high performance of tri-iodide perovskite absorber based photovoltaics with a non-polar solvent washing treatment,” Sol. Energy Mater. Sol. Cells, vol. 141, pp. 309-314, 2015.
[18] L. Hu, J. Peng, W. Wang, Z. Xia, J. Yuan, J. Lu, X. Huang, W. Ma, H. Song, W. Chen, Y. B. Cheng, and J. Tang, “Sequential deposition of CH3NH3PbI3 on planar NiO film for efficient planar perovskite solar cells,” Am. Chem. Soc., vol. 1, pp. 547-553, 2014.
[19] C. Bi, Y. Shao, Y. Yuan, Z. Xiao, C. Wang, Y. Gao, and J. Huang, “Understanding the formation and evolution of interdiffusion grown organolead halide perovskite thin films by thermal annealing,” J. Mater. Chem. A, vol. 2, pp. 18508-18514, 2014.
[20] Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao and J. Huang, “Efficient high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci., vol. 7, pp. 2619-2623, 2014.
[21] L. K. Ono, S. Wang, Y. Kato, S. R. Raga, and Y. Qi, “Fabrication of semi-transparent perovskite films with centimeter-scale superior uniformity by the hybrid deposition method,” Energy Environ. Sci., vol. 7, pp. 3989-3993, 2014.
[22] Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc., vol. 136, pp. 622-625, 2014.
[23] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science., vol. 338, pp. 643-647, 2008.
[24] G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grӓtzel, S. Mhaisalkar, and T. C. Sum, “Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3,” Science., vol. 342, pp. 344-347, 2013.
[25] K. X. Steirer, J. P. Chesin, and N. E. Widjonarko, “Solution deposited NiO thin-films as hole transport layers in organic photovoltaics,” Organic Electronics., vol.11,pp. 1414-1418, 2010.
[26] J. Cui, F. Meng, H. Zhang,K. Cao, H. Yuan, Y. Cheng, F. Huang, and M. Wang, “CH3NH3PbI3‑Based Planar Solar Cells with Magnetron-Sputtered Nickel Oxide, ” ACS Appl. Mater. Interfaces., vol 6, pp. 22862-22870, 2014.
第三章
[1] R. F. Bunshah and A. C. Raghuram, “Activated reactive evaporation process for high rate deposition of compounds,” J. Vac. Sci. Technol., vol. 9, pp. 1385-1388, 1972.
[2] V. A. Dao, T. Le, T. Tran, H. C. Nguyen, K. Kim, J. Lee, S. Jung, N. Lakshminarayan and J. Yi, “Electrical and optical studies of transparent conducting ZnO:Al thin films by magnetron dc sputtering,” J. Electroceram., vol. 23, pp. 356-360, 2009.
[3] V. V. Yanilk, V. P. Gubskaya,V. I. Morozov, N. V. Nastapova, V. V. Zverev, E. A. Berdnikov, and I. A. Nuretdinov, “Electrochemistry of fullerenes and their derivatives,” Acc. Chem. Res., vol. 31, pp. 593-601, 1998.
[4] P. Peumans and S. R. Forrest, “Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells,” Appl. Phys. Lett., vol. 79, pp. 126-128, 2001.
[5] V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery and Y. Yang, “Accurate measurement and characterization of organic solar cells,” Adv. Funct. Mater., vol. 16, pp. 2016-2023, 2006.
[6] H. L. Chen, Y. M. Lu, and W. S. Hwang, “Characterization of sputtered NiO thin films,” Surf. Coat. Technol., vol 198, pp. 138-142, 2005.
[7] M. B. Islam, M. Yanagida, Y. Shirai, Y. Nabetani, and K. Miyano, “NiOx Hole Transport Layer for Perovskite Solar Cells with Improved Stability and Reproducibility,” ACS Omega.,vol 2, pp. 2291−2299, 2017.
[8] K. X. Steirer, J. P. Chesin, N. E. Widjonarko, J. J. Berry, A. Miedaner, D. S. Ginley, and D. C. Olson, “Solution deposited NiO thin-films as hole transport layers in organic photovoltaics,” Org. Electron., vol 11, pp. 1414-1418, 2010.
[9] N. E.Widjonarko, E. I. Ratcliff, C. L. Perkins, A. K. Sigdel, A. Zakutayev, P. F. Ndione, D. T. Gillaspie, D. S. Ginley, D. C. Olson, and J. J. Berry, “Sputtered nickel oxide thinfilm for efficient hole transport layer in polymer-fullerene bulk-heterojunction organic solar cell,” Thin Solid Films., vol 520, pp. 3813-3818, 2012.
[10] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok “Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells,” Nature Mater., vol. 13, pp. 897-903 , 2014.
[11] C. C. Chen, S. H. Chang, L. C. Chen, F. S. Kao, H. M. Cheng, S. C. Yeh, C. T. Chen, W. T. Wu, Z. L. Tseng, C. L. Chuang, and C. G. Wu, “Improving the efficiency of inverted mixed-organic-cation perovskite absorber based photovoltaics by tailing the surface roughness of PEDOT:PSS thin film,” Solar Energy., vol 134, pp. 445-451, 2016.
[12] B. Slimi, M. Mollar, I. B. Assaker, I. Kriaa, R. Chtourou, and B. Mari, “Perovskite FA1-XMAXPbI3 for solar cell: films formation and properties,” Energy Procedia., vol 102, pp. 87-95, 2016.
[13] L. C. Chen, C. C. Chen, J. C. Chen, and C. G. Wu, “Annealing effects on high-performance CH3NH3PbI3 perovskite solar cells prepared by solution-process,” Sol. Energy, vol. 122, pp. 1047-1051, 2015.
[14] M. D. Irwin, D. B. Buchholz, A. W. Hains, and R. P. H. Chang, “P-type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells,” Proc. Natl. Acad., vol. 105, pp. 2783-2787, 2008.
[15] Y. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, G. C. Bazan and A. J. Heeger, “Solution-processed small-molecule solar cells with 6.7% efficiency,” Nat. Mater., vol. 11, pp. 44-48, 2012.
[16] T. Xiao , W. P. Cui , M. Cai , R. Liu , J. W. Anderegg , J. Shinar , and R. Shinar ,“Thin air-plasma-treated alkali fluoride layers for improved hole extraction in copper phthalocyanine/C70-based solar cells,” Nat. Mater., vol. 2, pp. 021006-1-021006-11, 2012.
[17] A. Kanwata and J. Jang ,“Extremely stable organic photovoltaic incorporated with WOx doped PEDOT: PSS anode buffer layer,” J. Mater. Chem., vol. 2, pp. 901-907, 2014.
[18] Y. M. Yang, W Chen, L. Dou, W. H. Chang, H. S. Duan, B. Bob, G. Li and Y Yang ,“High-performance multiple-donor bulk heterojunction solar cells,” Nat. Photonics, vol. 9, pp. 190-198, 2015.
第四章
[1] C. H. Chang and S. A. Chen, “Effect of ionization potential change in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid) on the performance of polymer light emitting diodes due to its reaction with indium tin oxide,” Appl. Phys. Lett., vol. 91, pp. 103514-1-103514-3, 2007.
[2] H. S. Kim, J. W. Lee, N. Yantara, P. P. Boix, A. A. Kulkarni, S. Mhaisalkar, M. Grӓtzel and N. G. Park, “High Efficiency Solid-State Sensitized Solar Cell-Based on Submicrometer Rutile TiO2 Nanorod and CH3NH3PbI3 Perovskite Sensitizer,” Nano. Lett., vol. 13, pp. 2412-2417, 2013.
[3] S. M. Sze, ‘‘Physics of semiconductor devices 2nd,’’ 1987.
[4] 肖立新、鄧德春,「鈣鈦礦太陽電池」,北京大學出版社,2016。
[5] H. L. Chen, Y. M. Lu, and W. S. Hwang, “Characterization of sputtered NiO thin films,” Surf. Coat. Technol., vol 198, pp. 138-142, 2005.
[6] M. B. Islam, M. Yanagida, Y. Shirai, Y. Nabetani, and K. Miyano, “NiOx Hole Transport Layer for Perovskite Solar Cells with Improved Stability and Reproducibility,” ACS Omega.,vol 2, pp. 2291−2299, 2017.
[7] K. X. Steirer, J. P. Chesin, N. E. Widjonarko, J. J. Berry, A. Miedaner, D. S. Ginley, and D. C. Olson, “Solution deposited NiO thin-films as hole transport layers in organic photovoltaics,” Org. Electron., vol 11, pp. 1414-1418, 2010.
[8] N. E.Widjonarko, E. I. Ratcliff, C. L. Perkins, A. K. Sigdel, A. Zakutayev, P. F. Ndione, D. T. Gillaspie, D. S. Ginley, D. C. Olson, and J. J. Berry, “Sputtered nickel oxide thinfilm for efficient hole transport layer in polymer-fullerene bulk-heterojunction organic solar cell,” Thin Solid Films., vol 520, pp. 3813-3818, 2012.
[9] L. C. Chen, C. C. Chen, J. C. Chen, and C. G. Wu, “Annealing effects on high-performance CH3NH3PbI3 perovskite solar cells prepared by solution-process,” Sol. Energy, vol. 122, pp. 1047-1051, 2015.
[10] N. J. John, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu and S. I. Seok, “Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells,” Nature. Mater., vol. 13, pp. 897-903, 2014.