| 研究生: |
賴宜生 Lai, Yi-Sheng |
|---|---|
| 論文名稱: |
超薄氮氧化矽作為五氧化二鉭閘極氧化層之中介層特性研究 Characterization of ultrathin silicon oxynitride interlayer in combination with tantalum oxide for gate dielectric applications |
| 指導教授: |
陳貞夙
Chen, Jen-Sue |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 161 |
| 中文關鍵詞: | 電漿氮化 、氮氧化矽 、五氧化二鉭 、閘極氧化層 |
| 外文關鍵詞: | plasma nitridation, silicon oxynitride, gate oxide, tantalum oxide |
| 相關次數: | 點閱:78 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文的第一部分中,吾人利用低溫(450oC)電漿氮化矽基材,鍍製厚度低於25 Å的氮氧化矽(SiOxNy)薄膜,並且利用X光光電子能譜(XPS)分析SiOxNy薄膜的鍵結結構、氮含量與其深度的分佈。從XPS所得到的SiOxNy薄膜厚度與高解析穿透式電子顯微鏡所得到的厚度有良好的一致性,SiOxNy薄膜在一開始時成長速率較快,可是當厚度變厚時,速率會比較緩慢,吾人也發現大部分的氮原子會集中在SiOxNy/Si的界面上,從氮的1s鍵結能譜中顯示氮原子大部分與三個矽原子鍵結(N-Si3的鍵結組態)。當鍍膜時間增加時,SiOxNy薄膜中的氮與氧的1s鍵結會往高能量的地方移動,這是由於氧在SiOxNy薄膜的比例增加的緣故。混合N2O與NH3兩種氣體進行電漿氮化顯示SiOxNy薄膜內的氮含量隨著NH3/N2O的比例增加而增加,可是沉積速率降低。因此,藉由了解電漿氮化的特性,吾人可以控制SiOxNy薄膜的化學鍵結結構與氮含量,以及其厚度。
本論文的第一部分乃利用幾種薄膜測厚的工具來量測超薄SiOxNy薄膜與非晶質的五氧化二鉭(Ta2O5)薄膜沉積在矽基材上的厚度。多波長橢圓儀可以用來決定SiOxNy 與Ta2O5薄膜的折射率及厚度。吾人使用Bruggeman的有效介質(EMA)理論來決定混合介質的光學常數,並且用橢圓儀來量測應用此光學模型的薄膜厚度。此外,利用XPS作為互補的工具來鑑定薄膜的組成與厚度,吾人發現EMA模型可以用來解釋SiOxNy薄膜混合相(SiO2與Si3N4)的組成以及Ta2O5薄膜偏離計量比的程度。
而論文的第三部分研究低溫N2O與NH3電漿氮化矽基材與Ta2O5的熱穩定性。吾人使用電容–電壓(C-V)法來研究Ta2O5/Si系統的電性與缺陷特性,C-V的量測顯示Ta2O5沉積在非氮化矽基材表面含有較高密度的固定電荷(Qf)、捕獲缺陷(Nh)與界面態缺陷密度(Dit),代表著在Ta2O5沉積時形成了一層缺陷較多的中介層。Ta2O5沉積在N2O與NH3電漿氮化矽基材兩種系統中都顯示降低的固定電荷與捕獲缺陷的數量,然而,NH3電漿氮化並不如N2O電漿氮化一樣能有效地降低界面態缺陷密度,這種在N2O與NH3電漿氮化矽基材中不同的電性與缺陷特性可以歸因於含氮量較多的SiOxNy薄膜的再氧化過程中所產生的缺陷。因此,有效的氮化程序應該與該氮化的中介層在Ta2O5沉積時的熱穩定性有關。
經過650oC與800oC的熱退火處理後,除了N2O電漿氮化矽基材增加量較少外,其餘的Nh 值皆有增加的趨勢,但是都能降低Dit值到~1012 cm-2eV-1的水平。同時,Ta2O5薄膜的再結晶與NH3電漿SiOxNy薄膜中的氮的減少可以在800oC的熱退火後觀察到。至於I-V的特性顯示,所有的初鍍膜皆有很大的漏電流現象,與是否經過電漿氮化前處理無關,後退火處理可以明顯地降低漏電流,而且退火過的Ta2O5薄膜沉積在N2O電漿氮化矽基材上顯示比其他系統在高電場下有較佳的I-V特性。
In Chapter 1, ultrathin silicon oxynitride (SiOxNy) less than 25 Å has been grown by low-temperature (at 450oC) N2O and NH3 plasma immersion on Si surface. The bonding structures and their distribution in depth, as well as the quantity of nitrogen in the SiOxNy layers are studied by X-ray photoelectron spectroscopy. A good coincidence is established in SiOxNy thickness extracted from the attenuated Si 2p3/2 photoelectron signal and high-resolution transmission electron micrograph. The increase of SiOxNy thickness is fast at the initial growth and slows down as the oxynitride thickens. It is found that nitrogen atoms are concentrated at the SiOxNy/Si interface. The binding energy (BE) of N 1s core levels shows that N atoms are mostly bonded to three Si atoms (the N-Si3 state). Long-time growth of oxynitride will shift N and O 1s core levels to a higher BE due to increments of oxygen in the SiOxNy layer. Exploration of (N2O+NH3) plasma nitridation suggests that the nitrogen content increases with increasing NH3/N2O ratio, whereas the deposition rate of oxynitride decreases. With the understanding of plasma nitridation basics, control of chemical binding structure, nitrogen content, as well as thickness of the SiOxNy layer is therefore realized.
In Chapter 2, spectroscopic ellipsometry was used to determine the complex refractive index and the thickness of the SiOxNy and Ta2O5 layers. To determine the composition of the dielectric stack, the Bruggeman effective medium approximation (EMA) model was applied to each layer for fitting the ellipsometry data. Using X-ray photoelectron spectroscopy (XPS) as a complementary method to verify the film composition and thickness, we have found that the EMA model explains the composition of the two mixed phases (SiO2 and Si3N4) in the SiOxNy layer, as well as the off-stoichiometry in the Ta2O5 layer.
Effects of various pre-nitridation and post-annealing processes on the structural and electrical characteristics of Ta2O5/Si systems are discussed in Chapter 3. Low-temperature N2O and NH3 plasma nitridations on the Si surface are conducted to prevent the thermodynamic instability at the Ta2O5/Si interface. Capacitance-voltage (C V) measurements were carried out to investigate the electric/defect characteristics of the Ta2O5/Si systems. For the non-nitrided Si substrate, XPS detects no surface oxide formed prior to Ta2O5 deposition. C V measurement reveals high densities of fixed charges, trapping sites and interface states in the Ta2O5/non-nitrided Si sample; indicative of a defective interlayer is formed during Ta2O5 deposition. Ta2O5 on both nitrided systems exhibits a reduced amount of fixed charges and trapping sites. Nevertheless, NH3 plasma nitridation is not as effective as N2O plasma nitridation in diminishing the density of interface states. The different electric/defect characters between the NH3 and N2O nitrided systems are attributed to the further oxidation of the nitrogen-rich SiOxNy layer produced by NH3 plasma nitridation, which induces defects at the dielectric/Si interface. The effectiveness of nitridation process, therefore, shall depend on the stability of the nitrided layer during deposition of Ta2O5.
Post-deposition annealing at 650oC or 800oC leads to an increment of Nh, except in a less extent for the N2O nitrided sample, and reduce all Dit to ~1012 cm-2eV-1. Concurrently, crystallization of the Ta2O5 layer and depletion of nitrogen in the SiOxNy interlayer formed by NH3 plasma nitridation are observed after annealing at 800oC. As for current-voltage (I V) characteristics, all as-deposited samples exhibit large leakage currents, regardless of the pre-nitridation process. Post-deposition annealing will significantly lower the leakage currents and the annealed Ta2O5 deposited on N2O nitrided Si exhibits the best I V character than the others at high electric field.
1. R. H. Dennard, F. H. Gaensslen, H. Yu, V. L. Rideout, E. Bassous, and A. R. LeBlanc, Design of ion-implanted MOSFET’s with very small physical dimensions, IEEE J. Solid-State Circuits 9, 256 (1974).
2. S. Asai and Y. Wada, Technology challenges for integration near and below 0.1 m, Proc. IEEE 85, 505 (1997).
3. See, The International Technology Roadmap for Semiconductors, (Semiconductor Industry Association, San Jose, 2001).
4. R. M. Wallace and G. D. Wilk, Exploring the limits of gate dielectric scaling, Semicond. Int. June, 153 (2001).
5. B. Yu, H. Wang, C. Riccobene, Q. Xiang, and M.-R. Lin, Limits of gate-oxide scaling in nano-transistors, IEEE Symposium on VLSI Tech. Dig., 90 (2000).
6. D. A. Muller, T. Sorsch, S. Moccio, F. H. Baumann, K. Evans-Lutterodt, and G. Timp, The electronic structure at the atomic scale of ultrathin gate oxides, Nature 399, 758 (1999).
7. G. D. Wilk, R. M. Wallace, and J. M. Anthony, High-k gate dielectrics: Current status and materials properties considerations, J. Appl. Phys. 89, 5243 (2001).
8. J. D. Plummer and P. B. Griffin, Material and process limits in silicon VLSI technology, Proc. IEEE 89, 240 (2001).
9. C. P. Liu, Y. Ma, H. Luftman, and S. J. Hillenius, Preventing boron penetration through 25-Å gate oxides with nitrogen implant in the Si substrates, IEEE Electron Dev. Lett. 18, 212 (1997).
10. A. Martin, P. Osullivan, and A. Mathewson, Dielectric relibility measurement methods: A review, Microelectron. Reliab. 38, 37 (1998).
11. S. H. Lo, and D. A. Buchanan, and Y. Taur, Modeling and characterization of quantization, polysilicon depletion and direct tunneling effects in MOSFETs with ultrathin oxides, IBM J. Res. Develop. 43, 327 (1999).
12. C. A. Billman, P. H. Tan, K. J. Hubbard, and D. G. Kanan, Alternate gate oxides for silicon MOSFETs using high k dielectrics, Mater. Res. Soc. Symp. Proc. 567, 409 (1999).
13. A. Nakajima, Q. D. M. Khosru, T. Yoshimoto, T. Kidera, and S. Yokoyama, NH3-annealed atomic-layer-deposited silicon nitride as a high-k gate dielectric with high reliability, Appl. Phys. Lett. 80, 1252 (2002).
14. Y.-C. Yeo, T.-J. King, and C. Hu, Direct tunneling leakage current and scalability of alternative gate dielectrics, Appl. Phys. Lett. 81, 2091 (2002).
15. G. B. Alers, D. J. Werder, Y. Chabal, H. C. Lu, E. P. Gusev, E. Garfunkel, T. Gustafsson, and R. S. Urdahl, Intermixing at the tantalum oxide/silicon interface in gate dielectric structures, Appl. Phys. Lett. 73, 1517 (1998).
16. Y.-S. Lai, K.-J. Chen, and J. S. Chen, Investigation of the interlayer characteristics of Ta2O5 thin films deposited on bare, N2O, and NH3 plasma nitridated Si substrates, J. Appl. Phys. 91, 6428 (2002).
17. Y.-S. Lai, K.-J. Chen, and J. S. Chen, Effects of Plasma Prenitridation and Postdeposition Annealing on the Structural and Dielectric Characteristics of the Ta2O5/Si System, J. Electrochem. Soc. 149, F63 (2002).
18. M. Houssa, R. Degraeve, P. W. Mertens, M. M. Heyns, J. S. Jeon, A. Halliyal, and B. Ogle, Electrical properties of thin SiON/Ta2O5 gate dielectric stacks, J. Appl. Phys. 86, 6462 (1999).
19. H. F. Luan, S. J. Lee, C. H. Lee, S. C. Song, Y. L, Mao, Y. Senzaki, D. Roberts, and D. L. Kwong, High Quality Ta2O5 Gate Dielectrics with Tox,eq<10 Å, IEDM Tech. Dig. 06_03 (1999).
20. S. Inumiya, A. Yagishita, T. Saito, M. Hotta, Y. Ozawa, K. Suguro, Y. Tsunashima, and T. Arikado, Sub-1.3nm amorphous tantalum pentoxide gate dielectrics for damascene metal gate transistors, Jpn. J. Appl. Phys. 39, 2087 (2000).
21. J.-C. Yu, B. C. Lai, and J. Y. Lee, Fabrication and characterization of metal-oxide- semiconductor field-effect transistors and gated diodes using Ta2O5 gate oxide, IEEE Electron Device Lett. 21, 537 (2000).
22. B. Gallas, A. Brunet-Bruneau, S. Fisson, G. Vuye, and J. Rivory, SiO2–TiO2 interfaces studied by ellipsometry and x-ray photoemission spectroscopy, J. Appl. Phys. 92, 1922 (2002).
23. M. Koyama, A. Kaneko, M. Koike, Fujiwara, M. Yabuki, M. Yoshiki, M. Koike, and A. Nishiyama, Electrical and structural characteristics of ultra-thin TiO2/Ti-Si-O stacked gate insulator formed by rf sputtering technique, Mater. Res. Soc. Symp. Proc. 670, K4_7 (2001).
24. S. A. Campbell, D. C. Gilmer, X.-C. Wang, M.-T. Hsieh, H.-S. Kim, W. L. Gladfelter, and J. Yan, MOSFET Transistors Fabricated with High Permitivity TiO2 Dielectrics, IEEE Trans. Electron Devices 44, 104 (1997).
25. S. A. Campbell, H.-S. Kim, D. C. Gilmer, B. He, T. Ma, and W. L. Gladfelter, Titanium dioxide (TiO2)-based gate insulators, IBM J. Res. Develop. 43, 383 (1999).
26. M. Houssa, M. Naili, M. Heyns and A. Stesmans, Charge trapping in SiOx/ZrO2 and SiOx/TiO2 gate dielectric stacks, Jpn. J. Appl. Phys. 40, 2804 (2001).
27. X. Guo, T. P. Ma, T. Tamagawa, and B. L. Halpern, High Quality Ultra-thin TiO2/Si3N4 Gate Dielectric for Giga Scale MOS Technology, IEDM Tech. Dig. 377 (1998).
28. B. He, T. Ma, S. A. Campbell, and W. L. Gladfelter, A 1.1 nm oxide equivalent gate insulator formed using TiO2 on nitrided silicon, IEDM Tech. Dig. 1038 (1998).
29. B. H. Lee, L. Kang, R. Nieh, W.-J. Qi, and J. C. Lee, Thermal stability and electrical characteristics of ultrathin hafnium oxide gate dielectric reoxidized with rapid thermal annealing, Appl. Phys. Lett. 76, 1926 (2000).
30. J. Park, B. K. Park, M. Cho, C. S. Hwang, K. Oh, and D. Y. Yang, Chemical vapor deposition of HfO2 thin films using a novel carbon-free precursor, J. Electrochem. Soc. 149, G89 (2002).
31. Y.-S. Lin, R. Puthenkovilakam, and J. P. Chang, Dielectric property and thermal stability of HfO2 on silicon, Appl. Phys. Lett. 81, 2041 (2002).
32. S. Sayan, S. Aravamudhan, B. W. Busch, W. H. Schulte, F. Cosandey, G. D. Wilk, T. Gustafsson, and E. Garfunkel, Chemical vapor deposition of HfO2 films on Si(100), J. Vac. Sci. Technol. A 20, 507 (2002).
33. P. D. Kirsch, C. S. Kang, J. Lozano, J. C. Lee, and J. G. Ekerdt, Electrical and spectroscopic comparison of HfO2/Si interfaces on nitrided and un-nitrided Si(100), J. Appl. Phys. 91, 4353 (2002).
34. M. Cho, J. Park, H. B. Park, C. S. Hwang, J. Jeong and K. S. Hyun, Chemical interaction between atomic-layer-deposited HfO2 thin films and the Si substrate, Appl. Phys. Lett. 81, 334 (2002).
35. C.-L. Liu, Z. X. Jiang, R. I. Hegde, D. D. Sieloff, R. S. Rai, D. C. Gilmer, C. C. Hobbs, P. J. Tobin, and S. Lu, Theoretical and experimental investigation of boron diffusion in polycrystalline HfO2 films, Appl. Phys. Lett. 81, 1441 (2002).
36. M.-H. Cho, Y. S. Roh, C. N. Whang, K. Jeong, S. W. Nahm, D.-H. Ko, J. H. Lee, N. I. Lee, and K. Fujihara, Thermal stability and structural characteristics of HfO2 films on Si(100) grown by atomic-layer deposition, Appl. Phys. Lett. 81, 472 (2002).
37. K. P. Bastos, J. Morais, L. Miotti, R. P. Pezzi, G. V. Soares, I. J. R. Baumvol, R. I. Hegde, H. H. Tseng, and P. J. Tobin, Oxygen reaction-diffusion in metalorganic chemical vapor deposition HfO2 films annealed in O2, Appl. Phys. Lett. 81, 1669 (2002).
38. K. Yamamoto, S. Hayashi, M. Kubota, and M. Niwa, Effect of Hf metal predeposition on the properties of sputtered HfO2/Hf stacked gate dielectrics, Appl. Phys. Lett. 81, 2053 (2002).
39. M. Gutowski, J. E. Jaffe, C.-L. Liu and M. Stoker, Thermodynamic stability of high-k dielectric metal oxides ZrO2 and HfO2 in contact with Si and SiO2, Appl. Phys. Lett. 80, 1897 (2002).
40. B. H. Lee, L. Kang, R. Nieh, W.-J. Qi, and J. C. Lee, Thermal stability and electrical characteristics of ultrathin hafnium oxide gate dielectric reoxidized with rapid thermal annealing, Appl. Phys. Lett. 76, 1926 (2000).
41. S. J. Lee, H. F. Luan, W. P. Bai, C. H. Lee, T. S. Jeon, Y. Senzaki, D. Roberts, and D. L. Kwong, High quality ultraThin CVD HfO2 gate stack with poly-Si gate electrode, IEDM Tech. Dig. 31 (2000).
42. J.-H. Lee, and M. Ichikawa, Analysis of interfacial silicates and silicides formed by annealing ultrathin Hf on SiO2: Effect of Hf/SiO2 thickness ratio, J. Appl. Phys. 92, 1929 (2002).
43. H. Kang, Y. Roh, G. Bae, D. Jung, and C.-W. Yang, Characteristics of HfO2/HfSixOy film as an alternative gate dielectric in metal–oxide–semiconductor devices, J. Vac. Sci. Technol. B 20, 1360 (2002).
44. S. J. Lee, T. S. Jeon, D. L. Kwong, and R. Clark, Hafnium oxide gate stack prepared by in situ rapid thermal chemical vapor deposition process for advanced gate dielectrics, J. Appl. Phys. 92, 2807 (2002).
45. H. Harris, K. Choi, N. Mehta, A. Chandolu, N. Biswas, G. Kipshidze, S. Nikishin, S. Gangopadhyay, and H. Temkin, HfO2 gate dielectric with 0.5 nm equivalent oxide thickness, Appl. Phys. Lett. 81, 1065 (2002).
46. S. Zafar, A. Callegari, E. Gusev, M. V. Fischetti, Charge trapping in high k gate dielectric stacks, IEDM Tech. Dig. 20_04 (2002).
47. V. Misra, G. P. Heuss, and H. Zhong, Use of metal-oxide-semiconductor capacitors to detect interactions of Hf and Zr gate electrodes with SiO2 and ZrO2, Appl. Phys. Lett. 78, 4166 (2001).
48. M. A. Gribelyuk, A. Callegari, E. P. Gusev, M. Copel, and D. A. Buchanan, Interface reactions in ZrO2 based gate dielectric stacks, J. Appl. Phys. 92, 1232 (2002).
49. C. M. Perkins, B. B. Triplett, P. C. McIntyre, K. C. Saraswat, and E. Shero, Thermal stability of polycrystalline silicon electrodes on ZrO2 gate dielectrics, Appl. Phys. Lett. 81, 1417 (2002).
50. K. Muraoka, Reaction steps of silicidation in ZrO2/SiO2/Si layered structure, Appl. Phys. Lett. 80, 4516 (2002).
51. K. Kukli, M. Ritala, J. Aarik, T. Uustare, and M. Leskelä, Influence of growth temperature on properties of zirconium dioxide films grown by atomic layer deposition, J. Appl. Phys. 92, 1833 (2002).
52. N. Ikarashi and K. Manabe, Spatially-resolved valence-electron energy-loss spectroscopy of Zr-oxide and Zr-silicate films, Appl. Phys. Lett. 80, 4127 (2002).
53. H.-W. Chen, T.-Y. Huang, D. Landheer, X. Wu, S. Moisa, G. I. Sproule, and T.-S. Chao, Physical and electrical characterization of ZrO2 gate insulators deposited on Si(100) using Zr(Oi-Pr)2(thd)2 and O2, J. Electrochem. Soc. 149, F49 (2002).
54. C. H. Lee, H. H. Luan, W. P. Bai, S. J. Lee, T. S. Jeon, Y. Senzaki, D. Roberts, and D. L. Kwong, MOS Characteristics of Ultra Thin Rapid Thermal CVD ZrO2 and Zr Silicate Gate Dielectrics, IEDM Tech. Dig. 27 (2000).
55. J. R. Chavez, R. A. B. Devine, and L. Koltunski, Evidence for hole and electron trapping in plasma deposited ZrO2 thin films, J. Appl. Phys. 90, 4284 (2001).
56. Y. Kim, G. Gebara, M. Freiler, J. Barnett, D. Riley, J. Chen, K. Torres, J. Lim, B. Foran, F. Shaapur, A. Agarwal, P. Lysaght, G. A. Brown, C. Young, S. Borthakur, H.-J. Li, B. Nguyen, P. Zeitzoff, G. Bersuker, D. Derro, R. Bergmann, R. W. Murto, A. Hou, H. R. Huff, E. Shero, C. Pomarede, M. Givens, M. Mazanec, and C. Werkhoven, Conventional n-channel MOSFET devices using single layer HfO2 and ZrO2 as high-k gate dielectrics with polysilicon gate electrode, IEDM Tech. Dig. 20_2 (2001).
57. S. Ramanathan and P. C. McIntyre, Ultrathin zirconia/SiO2 dielectric stacks grown by ultraviolet–ozone oxidation, Appl. Phys. Lett. 80, 3793 (2002).
58. M. Houssa, J. L. Autran, A. Stesmans, and M. M. Heyns, Model for interface defect and positive charge generation in ultrathin SiO2/ZrO2 gate dielectric stacks, Appl. Phys. Lett. 81, 709 (2002).
59. R. Nieh, R. Choi, S. Gopalan, K. Onishi, C. S. Kang, H.-J. Cho, S. Krishnan, and J. C. Lee, Evaluation of silicon surface nitridation effects on ultra-thin ZrO2 gate dielectrics, Appl. Phys. Lett. 81, 1663 (2002).
60. A. Stesmans and V. V. Afanas'ev, Si dangling-bond-type defects at the interface of (100)Si with ultrathin layers of SiOx, Al2O3 , and ZrO2, Appl. Phys. Lett. 80, 1957 (2002).
61. Y. Nishikawa, T. Yamaguchi, M. Yoshiki, H. Satake, and N. Fukushima, Interfacial properties of single crystalline CeO2 high k gate dielectrics directly grown on Si(111), Appl. Phys. Lett. 81, 4386 (2002).
62. Y. Nishikawa, N. Fukushima, N. Yasuda, K. Nakayama, and S. Ikegawa, Electrical properties of single crystalline CeO2 high k gate dielectrics directly grown on Si(111), Jpn. J. Appl. Phys. 41, 2480 (2002).
63. M. Copel, E. Cartier, E. P. Gusev, S. Guha, N. Bojarczuk, and M. Poppeller, Robustness of ultrathin aluminum oxide dielectrics on Si(001), Appl. Phys. Lett. 78, 2670 (2001).
64. M. Kundu, N. Miyata, and M. Ichikawa, Investigation of the effect of high-temperature annealing on stability of ultrathin Al2O3 films on Si(001), J. Appl. Phys. 91, 1914 (2002).
65. M. Kundu, M. Ichikawa, and N. Miyata, Effect of oxygen pressure on the structure and thermal stability of ultrathin Al2O3 films on Si(001), J. Appl. Phys. 91, 492 (2002).
66. J. H. Lee, K. Koh, N. I. Lee, M. H. Cho, Y. K. Kim, J. S. Jeon, K. H. Cho, H. S. Shin, M. H. Kim, K. Fujihara, H. K. Kang, and J. T. Moon, Effect of polysilicon gate on the flatband voltage shift and mobility degradation for ALD Al2O3 gate dielectric, IEDM Tech. Dig. 28_03 (2000).
67. D. A. Buchanan, E. P. Gusev, E. Cartier, H. Okorn-Schmidt, K. Rim, M. A. Gribelyuk, A. Mocuta, A. Ajmera, M. Copel1, S. Guha, N. Bojarczuk, A. Callegari, C. D’Emic, P. Kozlowski, K. Chan, R. J. Fleming, P. C. Jamison, J. Brown, and R. Arndt, 80 nm poly-silicon gated n-FETs with ultra-thin Al2O3 gate dielectric for ULSI applications, IEDM Tech. Dig. 10_01 (2000).
68. S. Guha, E. Cartier, N. A. Bojarczuk, J. Bruley, L. Gignac, and J. Karasinski, High-quality aluminum oxide gate dielectrics by ultra-high-vacuum reactive atomic-beam deposition, J. Appl. Phys. 90, 512 (2001).
69. A. Dimoulas, G. Vellianitis, A. Travlos, V. Ioannou-Sougleridis and A. G. Nassiopoulou, Structural and electrical quality of the high-k dielectric Y2O3 on Si(001): Dependence on growth parameters, J. Appl. Phys. 92, 426 (2002).
70. D. Niu, R. W. Ashcraft, Z. Chen, S. Stemmer, and G. N. Parsons, Electron energy-loss spectroscopy analysis of interface structure of yttrium oxide gate dielectrics on silicon, Appl. Phys. Lett. 81, 676 (2002).
71. S. Stemmer, D. O. Klenov, Z. Chen, D. Niu, R. W. Ashcraft, and G. N. Parsons, Reactions of Y2O3 films with (001) Si substrates and with polycrystalline Si capping layers, Appl. Phys. Lett. 81, 712 (2002).
72. H. Ono and T. Katsumata, Interfacial reactions between thin rare-earth-metal oxide films and Si substrates, Appl. Phys. Lett. 78, 1832 (2001).
73. S. Stemmer, J.-P. Maria and A. I. Kingon, Structure and stability of La2O3/SiO2 layers on Si(001), Appl. Phys. Lett. 79, 102 (2001).
74. H. Iwai, S. Ohmi, S. Akama, C. Ohshima, A. Kikuchi, I. Kashiwagi, J. Taguchi, H. Yamamoto, J. Tonotani, Y. Kim, I. Ueda, A. Kuriyama, and Y. Yoshihara, Advanced gate dielectric materials for sub-100 nm CMOS, IEDM Tech. Dig. 26_04 (2002).
75. D. Landheer, J. A. Gupta, G. I. Sproule, J. P. McCaffrey, M. J. Graham, K.-C. Yang, Z.-H. Lu, and W. N. Lennard, Characterization of Gd2O3 films deposited on Si(100) by electron-beam evaporation, J. Electrochem. Soc. 148, G29 (2001).
76. S. Jeon, K. Im, H. Yang, H. Lee, H. Sim, S. Choi, T. Jang, and H. Hwang, Excellent electrical characteristics of lanthanide (Pr, Nd, Sm, Gd, and Dy) oxide and lanthanide-doped oxide for MOS gate dielectric applications, IEDM Tech. Dig. 20_06 (2001).
77. H. J. Osten, J. P. Liu, P. Gaworzewski, E. Bugiel, and P. Zaumseil, High-k gate dielectrics with ultra-low leakage current based on praseodymium oxide, IEDM Tech. Dig. 28_05 (2000).
78. R. J. Cava, J. J. Krajewski, W. F. Peck, Jr., and G. L. Roberts, Dielectric properties of Ta2O5-SiO2 polycrystalline ceramics, J. Appl. Phys. 80, 2346 (1996).
79. R. Beyers, Thermodynamic considerations in refractory metal-silicon-oxygen systems, J. Appl. Phys. 56, 147 (1984).
80. D. K. Sarkar, E. Desbiens, and M. A. El Khakani, High-k titanium silicate dielectric thin films grown by pulsed-laser deposition, Appl. Phys. Lett. 80, 294 (2002).
81. A. Nishiyama, A. Kaneko, M. Koyama, Y. Kamata, I. Fujiwara, M. Koike, M. Yoshiki and M. Koike, Investigation on the thermal and electrical properties of Ti-Si-O film formed by the composite sputtering deposition, Mater. Res. Soc. Symp. Proc. 670, K4_8 (2001).
82. M. A. Russack, C. V. Jahnes, and E. P. Katz, Reactive magnetron sputtered zirconium oxide and zirconium silicon oxide thin films, J. Vac. Sci. Technol. A 7, 1248 (1989).
83. G. B. Rayner, Jr., D. Kang, Y. Zhang, and G. Lucovsky, Nonlinear composition dependence of x-ray photoelectron spectroscopy and Auger electron spectroscopy features in plasma- deposited zirconium silicate alloy thin films, J. Vac. Sci. Technol. B 20, 1748 (2002).
84. M. J. Guittet, J. P. Crocombette, and M. Gautier-Soyer, Bonding and XPS chemical shifts in ZrSiO4 versus SiO2 and ZrO2: Charge transfer and electrostatic effects, Phy. Rev. B 63, 125117 (2001).
85. D. A. Muller and G. D. Wilk, Atomic scale measurements of the interfacial electronic structure and chemistry of zirconium silicate gate dielectrics, Appl. Phys. Lett. 79, 4195 (2001).
86. R. L. Opila, G. D. Wilk, M. A. Alam, R. B. van Dover, and B. W. Busch, Photoemission study of Zr- and Hf-silicates for use as high-k oxides: Role of second nearest neighbors and interface charge, Appl. Phys. Lett. 81, 1788 (2002).
87. T. Yamaguchi, H. Satake, N. Fukushima, and A. Toriumi, Study on Zr-silicate interfacial layer of ZrO2 metal-insulator-semiconductor structure, Appl. Phys. Lett. 80, 1987 (2002).
88. B. C. Hendrix, A. S. Borovik, C. Xu, J. F. Roeder, T. H. Baum, M. J. Bevan, M. R. Visokay, J. J. Chambers, A. L. P. Rotondaro, H. Bu, and L. Colombo, Composition control of Hf1-xSixO2 films deposited on Si by chemical-vapor deposition using amide precursors, Appl. Phys. Lett. 80, 2362 (2002).
89. M. R. Visokay, J. J. Chambers, A. L. P. Rotondaro, A. Shanware, and L. Colombo, Application of HfSiON as a gate dielectric material, Appl. Phys. Lett. 80, 3183 (2002).
90. J.-H. Lee, and M. Ichikawa, Compositionally graded hafnium silicate studied by chemically selective scanning tunneling microscopy, J. Appl. Phys. 91, 5661 (2002).
91. E. P. Gusev, M. Copel, E. Cartier, I. J. R. Baumvol, C. Krug, and M. A. Gribelyuk, High-resolution depth profiling in ultrathin Al2O3 films on Si, Appl. Phys. Lett. 76, 176 (2000).
92. M.-H. Cho, Y. S. Rho, H.-J. Choi, S. W. Nam, D.-H. Ko, J. H. Ku, H. C. Kang, D. Y. Noh, C. N. Whang, and K. Jeong, Annealing effects of aluminum silicate films grown on Si(100), J. Vac. Sci. Technol. A 20, 865 (2002).
93. D. Niu, R. W. Ashcraft, M. J. Kelly, J. J. Chambers, T. M. Klein, and G. N. Parsons, Elementary reaction schemes for physical and chemical vapor deposition of transition metal oxides on silicon for high- k gate dielectric applications, J. Appl. Phys. 91, 6173 (2002).
94. J. J. Chambers and G. N. Parsons, Physical and electrical characterization of ultrathin yttrium silicate insulators on silicon, J. Appl. Phys. 90, 918 (2001).
95. R. J. Cava, W. F. Peck, Jr., J. J. Krajewski, G. L. Roberts, B. P. Barber, H. M. O'Bryan, and P. L. Gammel, Improvemet of the Dielectric Properties of Ta2O5 through Substitution with Al2O3, Appl. Phys. Lett. 70, 1396 (1997).
96. M. D. Ulrich, R. S. Johnson, J. G. Hong, J. E. Rowe, G. Lucovsky, J. S. Quinton, and T. E. Madey, Interface electronic structure of Ta2O5–Al2O3 alloys for Si-field-effect transistor gate dielectric applications, J. Vac. Sci. Technol. B 20, 1732 (2002).
97. P. C. Joshi, S. Stowell, and S. B. Desu, Structural and electrical properties of crystalline (1-x)Ta2O5-xAl2O3 thin films fabricated by metalorganic solution deposition technique, Appl. Phys. Lett. 71, 1341 (1997).
98. S. B. Chen, C. H. Huang, A. Chin, J. Lin, J. P. Jou, K. C. Su, and J. Liub, RF noise characteristics of high-k AlTiOx and Al2O3 gate dielectrics, J. Electrochem. Soc. 149, F69 (2002).
99. C. Zhao, O. Richard, H. Bender, M. Caymax, S. De Gendt, M. Heyns, E. Young, G. Roebben, O. Van Der Biest, and S. Haukka, Miscibility of amorphous ZrO2–Al2O3 binary alloy, Appl. Phys. Lett. 80, 2374 (2002).
100. M. Haverty, A. Kawamoto, K. Cho, and R. Dutton, First-principles study of transition-metal aluminates as high-k gate dielectrics, Appl. Phys. Lett. 80, 2669 (2002).
101. L. Manchanda, M. L. Green, R. B. van Dover, M. D. Morris, A. Kerber, Y. Hu, J.-P. Han, P. J. Silverman, T. W. Sorsch, G. Weber, V. Donnelly, K. Pelhos, F. Klemens, N. A. Ciampa, A. Kornblit, Y. O. Kim, J. E. Bower, D. Barr, E. Ferry, D. Jacobson, J. Eng, B. Busch and H. Schulte, Si-Doped aluminates for high temperature metal-gate CMOS: Zr-Al-Si-O, A novel gate dielectric for low power applications, IEDM Tech. Dig. 02_02 (2000).
102. S. Roberts, J. G. Ryan, and D. W. Martin, Engineering Semiconductor Technology, ASTM STP 960, D. C. Gupta and P. H. Langer, Editor, (ASTM, Philadelphia, 1986), p. 137.
103. R. S. Johnson, J. G. Hong, C. Hinkle, and G. Lucovsky, Electron trapping in noncrystalline remote plasma deposited Hf-aluminate alloys for gate dielectric applications, J. Vac. Sci. Technol. B 20, 1126 (2002).
104. W. Zhu, T. P. Ma, T. Tamagawa, Y. Di, J. Kim, R. Carruthers, M.Gibson, and T. Furukawa, HfO2 and HfAlO for CMOS: Thermal Stability and Current Transport, IEDM Tech. Dig. 20_04 (2001).
105. R. Nieh, W.-J. Qi, Y. Jeon, B. H. Lee, A. Lucas, L. Kang, J. C. Lee, M. Gardner, and M. Gilmer, Nitrogen (N2) implantation to suppress growth of interfacial oxide in MOCVD BST and sputtered BST films, Mater. Res. Soc. Symp. Proc. 567, 521 (1999).
106. V. Shutthanandan, S. Thevuthasan, Y. Liang, E. M. Adams, Z. Yu and R. Droopad, Direct observation of atomic disordering at the SrTiO3/Si interface due to oxygen diffusion, Appl. Phys. Lett. 80, 1803 (2002).
107. H.-T. Lue, C.-Y. Liu, and T.-Y. Tseng, An Improved Two-Frequency Method of Capacitance Measurement for SrTiO3 as High-k Gate Dielectric, IEEE Electron Device Lett. 23, 553 (2002).
108. S. Jeon1, F. J. Walker, C. A. Billman, R. A. McKee, and H. Hwang, Epitaxial SrTiO3 on silicon with EOT of 5.4Å for MOS gate dielectric applications, IEDM Tech. Dig. 26_07 (2002).
109. C. S. Kang, H.-J. Cho, K. Onishi, R. Choi, Y. H. Kim, R. Nieh, J. Han, S. Krishnan, A. Shahriar, and J. C. Lee, Nitrogen concentration effects and performance improvement of MOSFETs using thermally stable HfOxNy gate dielectrics, IEDM Tech. Dig. 34_05 (2002).
110. M. Koyama, A. Kaneko1, T. Ino, M. Koike, Y. Kamata, R. Iijima1, Y. Kamimuta, A. Takashima, M. Suzuki, C. Hongo, S. Inumiya, M. Takayanagi and A. Nishiyama, Effects of nitrogen in HfSiON gate dielectric on the electrical and thermal characteristics, IEDM Tech. Dig. 34_01 (2002).
111. K. J. Hubbard and D. G. Schlom, Thermodynamic stability of binary oxides in contact with silicon, J. Mater. Res. 11, 2757 (1996).
112. D. G. Schlom and J. H. Haeni, A thermodynamic approach to selecting alternative gate dielectrics, MRS Bulletin Mar, 198 (2002).
113. J.-Y. Zhang and I. W. Boyd, Ultrathin high-quality tantalum pentoxide films grown by photoinduced chemical vapor deposition, Appl. Phys. Lett. 77, 3574 (2000).
114. J. Robertson, Electronic structure and band offsets of high-dielectric-constant gate oxides, MRS Bulletin Mar, 217 (2002).
115. P. W. Peacock and J. Robertson, Band offsets and Schottky barrier heights of high dielectric constant oxides, J. Appl. Phys. 92, 4712 (2002).
116. J. Robertson and C. W. Chen, Schottky barrier heights of tantalum oxide, barium strontium titanate, lead titanate, and strontium bismuth tantalate, Appl. Phys. Lett. 74, 1168 (1999).
117. T. P. Ma, Making silicon nitride film a viable gate dielectric, IEEE Trans. Electron Dev., 45, 680 (1998).
118. D. A. Buchanan, Scaling the gate dielectric: Materials, integration and reliability, IBM J. Res. Develop. 43, 245 (1999).
119. M. L. Green, E. P. Gusev, R. Degraeve, and E. L. Garfunkel, Ultrathin (<4 nm) SiO2 and Si–O–N gate dielectric layers for silicon microelectronics: Understanding the processing, structure, and physical and electrical limits, J. Appl. Phys. 90, 2057 (2001), and references therein.
120. G. Lucovsky, Y. Wu, N. Niimi, H. Yang, J. Keister, and J. E. Rowe, Separate and independent reductions in direct tunneling in oxide/nitride stacks with monolayer interface nitridation associated with the (i) interface nitridation and (ii) increased physical thickness, J. Vac. Sci. Technol. A 18, 1163 (2000).
121. I. J. R. Baumvol, Atomic transport during growth of ultrathin dielectrics on silicon, Surf. Sci. Rep. 36, 1 (1999), and references therein.
122. A. Khandelwal, B. C. Smith, and H. H. Lamb, Nitrogen incorporation in ultrathin gate dielectrics: A comparison of He/N2O and He/N2 remote plasma processes, J. Appl. Phys. 90, 3100 (2001).
123. S. Mahapatra, V. R. Rao, B. Cheng, M. Khare, C. D. Parikh, J. C. S. Woo and J. Vasi, Performance and hot-carrier reliability of 100 nm channel length jet vapor deposited Si3N4 MNSFETs, IEEE Trans. Electron Devices 48, 679 (2001).
124. Q. D. M. Khosru, A. Nakajima, T. Yoshimoto, and S. Yokoyama, Low thermal-budget ultrathin NH3-annealed atomic-layer-deposited Si-Nitride/SiO2 stack gate dielectrics with excellent reliability, IEEE Electron Device Lett. 23, 179 (2002).
125. E. Desbiens, R. Dolbec, and M. A. El Khakani, Reactive pulsed laser deposition of high- ksilicon dioxide and silicon oxynitride thin films for gate-dielectric applications, J. Vac. Sci. Technol. A 20, 1157 (2002).
126. H.-W. Chen, D. Landheer, T.-S. Chao, J. E. Hulse, and T.-Y. Huang, X-ray photoelectron spectroscopy of gate-quality silicon oxynitride films produced by annealing plasma-nitrided Si(100) in nitrous oxide, J. Electrochem. Soc. 148, F140 (2001).
127. H. R. Soleimani, B. S. Doyle, and A. Philipossian, Formation of ultrathin nitrided SiO2 oxides by direct nitrogen implantation into silicon, J. Electrochem. Soc. 142, L132 (1995).
128. E. P. Gusev, H.-C. Lu, E. L. Garfunkel, T. Gustafsson, and M. L. Green, Growth and caracterization of utrathin ntrided slicon oxide films, IBM J. Res. Develop. 43, 265 (1999).
129. S. R. Kaluri and D. W. Hess, Nitrogen incorporation in thin oxides by constant current N2O plasma anodization of silicon and N2 plasma nitridation of silicon oxides, Appl. Phys. Lett. 69, 1053 (1996), Nitrogen incorporation in thin silicon oxides in a N2O plasma, J. Electrochem. Soc. 145, 662 (1998).
130. Y. Saito, Oxynitridation of silicon by remote-plasma excited nitrogen and oxygen, Appl. Phys. Lett. 68, 800 (1996).
131. R. F. Pierret, Semiconductor Device Fundamentals, (Addison Wesley, MA, 1996).
132. M. Bhat, J. Kim, J. Yan, G. W. Yoon, L. K. Han, and D. L. Kwong, MOS characteristics of ultrathin NO grown oxynitrides, IEEE Electron Dev. Lett. 15, 421 (1994).
133. H. Huang, W. Ting, D.-L. Kwong, and J. Lee, Improved reliability characteristics of submicrometer nMOSFET’s with oxynitride gate dielectric pepared by rapid thermal oxidation in N2O, IEEE Electron Dev. Lett. 12, 495 (1991).
134. E. H. Nicollian and J. R. Brews, MOS Physics and Technology, (John Wiley & Sons, New Jersey, 1982).
135. J. Ushio, T. Maruizumi, and K. Kushida-Abdelghafar, Interface structures generated by negative-bias temperature instability in Si/SiO2 and Si/SiOxNy interfaces, Appl. Phys. Lett. 81, 1818 (2002).
136. D. Briggs and M. P. Seah, Practical Surface Analysis, 2nd Edition, Volume 1- Auger and X-ray Photoelectron Spectroscopy (Wiley, Chichester, 1990).
137. P. Swift, Adventitious carbon - The panacea for energy referencing, Surf. Interface Anal. 4, 47 (1982).
138. J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, J. Chastain and R. C. King, Jr., Editor, (Physical Electronics Inc., Minnesota, 1995).
139. D. A. Shirley, High resolution X-ray photoemission spectrum of the valence bands of gold, Phys. Rev. B 5, 4709 (1972).
140. R. W. M. Kwok, XPSPEAK 4.0, Department of Chemistry, The Chinese University of Hong Kong Shatin, Hong Kong, email: rmkwok@cuhk.edu.hk.
141. Z. H. Lu, M. J. Graham, D. T. Jiang, and K. H. Tan, SiO2/Sl(l00) interface studied by Al K x-ray and synchrotron radiation photoelectron spectroscopy, Appl. Phys. Lett. 63, 2941 (1993).
142. Available information from the website – http://www.lasurface.com.
143. M. F. Hochella, Jr. and A. H. Carim, A reassessment of electron escape depths in silicon and thermally grown silicon dioxide thin films, Surf. Sci. 197, L260 (1988).
144. F. J. Himpsel, F. R. McFeely, A. Taleb-Ibrahimi, J. A. Yarmoff, and G. Hollinger, Microscopic structure of the SiO2/Si interface, Phy. Rev. B 38, 6084 (1988).
145. I. Jiménez and J. L. Sacedón, Influence of Si oxidation methods on the distribution of suboxides at Si/SiO2 interfaces and their band alignment: a synchrotron photoemission study, Surf. Sci. 482-485, 272 (2001).
146. G.-M. Rignanese and A. Pasquarello, Nitrogen bonding configurations at nitrided Si(001) surfaces and Si(001)-SiO2 interfaces: A first-principles study of core-level shifts, Phys. Rev. B 63, 075307 (2001).
147. R. I. Hegde, P. J. Tobin, K. G. Reid, B. Maiti, and S. A. Ajuria, Growth and surface chemistry of oxynitride gate dielectric using nitric oxide, Appl. Phys. Lett. 66, 2882 (1995).
148. R. I. Hegde, B. Maiti, and P. J. Tobin, Growth and film characteristics of N2O and NO oxynitride gate and tunnel dielectrics, J. Electrochem. Soc. 144, 1081 (1997).
149. E. C. Carr and R. A. Buhrman, Role of interfacial nitrogen in improving thin silicon oxides grown in N2O, Appl. Phys. Lett. 63, 54 (1993).
150. M. Bhat, J. Ahn, D. L. Kwong, M. Arendt, and J. M. White, Comparison of the chemical structure and composition between N2O oxides and reoxidized NH3-nitrided oxides, Appl. Phys. Lett. 64, 1168 (1994).
151. H. T. Tang, W. N. Lennard, M. Zinke-Allmang, I. V. Mitchell, L. C. Feldman, M. L. Green, and D. Brasen, Nitrogen content of oxynitride films on Si(100), Appl. Phys. Lett. 64, 3473 (1994).
152. N. S. Sakes, D. I. Ma, and W. B. Fowler, Nitrogen depletion during oxidation in N2O, Appl. Phys. Lett. 67, 374 (1995).
153. K. A. Ellis and R. A. Buhrman, Furnace gas-phase chemistry of silicon oxynitridation in N2O, Appl. Phys. Lett. 68, 1696 (1996).
154. B. E. Deal and A. S. Grove, General relationship for the thermal oxidation of silicon, J. Appl. Phys. 36, 3770 (1965).
155. P. Cova, R. A. Masut, O. Grenier, and S. Poulin, Effect of unintentionally introduced oxygen on the electron–cyclotron resonance chemical-vapor deposition of SiNx films, J. Appl. Phys. 92, 129 (2002).
156. K. A. Ellis and R. A. Buhrman, Nitrous oxide (N2O) processing for silicon oxynitride gate dielectrics, IBM J. Res. Develop. 43, 287 (1999).
157. X. Xu, S.-Y. Kang and T. Yamabe, Mechanisms for NH3 Decomposition on Si(100)-(2x1) Surface: A Quantum Chemical Cluster Model Study, Chem. Eur. J. 8, 5351 (2002).
158. G.-M. Rignanese and A. Pasquarello, N 1s core-level shifts at the NH3 saturated Si(100)-2x1 surface: a first principle study, Surf. Sci. 490, L614 (2001).
159. C. H. Chen, Y. K. Fang, C. W. Yang, S. F. Ting, Y. S. Tsair, M. F. Wang, L. G. Yao, S. C. Chen, C. H. Yu, and M. S. Liang, Determination of deep ultrathin equivalent oxide thickness (EOT) from measuring flat band C-V curve, IEEE Trans. Electron Devices 49, 695 (2002).
160. N. Yang, W. K. Henson, J. R. Hauser, J. J. Wortman, Modeling study of ultrathin gate oxides using direct tunneling current and capacitance-voltage measurements in MOS devices, IEEE Trans. Electron Devices 46, 1464 (1999).
161. T.-S. Chao, Determination of ultrathin oxide thickness by subthreshold swing, Jpn. J. Appl. Phys. 41, 2904 (2002).
162. C.-H. Choi, J.-S. Goo, T.-Y. Oh, Z. Yu, R. W. Dutton, A. Bayoumi, M. Cao, P. V. Voorde, and D. Vook, C-V and gate tunneling current characterization of ultra-thin gate oxide MOS (tox=1.3 - 1.8 nm), IEEE Symposium on VLSI Tech. Dig. 63 (1999).
163. K. Yang, Y.-C. King, and C. Hu, Quantum effect in oxide thickness determination from capacitance measurement, IEEE Symposium on VLSI Tech. Dig. 77 (1999).
164. D. A. Cole, J. R. Shallenberger, S. W. Novak, R. L. Moore, M. J. Edgell, S. P. Smith, C. J. Hitzman, J. F. Kirchhoff, E. Principle, W. Nieveen, F. K. Huang, S. Biswas, R. J. Bleiler, and K. Jones, SiO2 thickness determination by x-ray photoelectron spectroscopy, Auger electron spectroscopy, secondary ion mass spectrometry, Rutherford backscattering, transmission electron microscopy, and ellipsometry. J. Vac. Sci. Technol. B 18, 440 (2000).
165. M. P. Seah and S. J. Spencer, Ultrathin SiO2 on Si II. Issues in quantification of the oxide thickness, Surf. Interface Anal. 33, 640 (2002).
166. S. Spruytte, C. Coldren, J. Harris, D. Pantelidis, H.-J. Lee, J. Bravman, and M. Kelly, Use of angle resolved x-ray photoelectron spectroscopy for determination of depth and thickness of compound layer structures, J. Vac. Sci. Technol. A 19, 603 (2001).
167. H. S. Chang, H. D. Yang, H. Hwang, H. M. Cho, H. J. Lee, and D. W. Moon, Measurement of the physical and electrical thickness of ultrathin gate oxides, J. Vac. Sci. Technol. B 20, 1836 (2002).
168. H. M. Cho, Y. W. Lee, I. W. Lee, D. W. Moon, B. Y. Kim, H. J. Kim, S. Y. Kim, and Y. J. Cho, Comparison of the effective oxide thickness determined by ellipsometry with the result by medium energy ion scattering spectroscopy and high-resolution transmission electron microscopy, J. Vac. Sci. Technol. B 19, 1144 (2001).
169. C. Hombourger, P. Jonnard, E. O. Filatova and V. Lukyanov, Thickness determination of very thin SiO2 films on Si by electron-induced x-ray emission spectroscopy, Appl. Phys. Lett. 81, 2740 (2002).
170. S. Uemura, M. Fujii, H. Hashimoto and N. Nagai, In situ observation of native oxide growth on a Si(100) surface using grazing incidence X-ray reflectivity and fourier transform infrared spectrometer, Jpn. J. Appl. Phys. 40, 5312 (2001).
171. F20 spectroscopic reflectometry User Manual, from Filmetrics Inc.
172. J. C. Jans, R. W. J. Hollering, and M. Erman, in Analysis of microelectronic materials and devices, M. Grasserbauer and H. W. Werner, Editor, (John Wiley & Sons, NY, 1996), pp. 681-732.
173. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light, (North-Holland, Amsterdam, 1987).
174. See, M-44 spectroscopic ellipsometry Online Help, from J. A. Woollam Corporation.
175. M. Ohring. Reliability and Failure of Electronic Materials and Devices, (Academic Press, CA, 1998), p. 183.
176. Reflectivity data processing software Instruction Manual, from Rigaku Corporation.
177. L. Grave de Peralta and H. Temkin, Improved Fourier method of thickness determined by x-ray reflectivity, J. Appl. Phys. 93, 1974 (2003).
178. Lecture Topics on Ellipsometry and reflectometry, from Rudolph Technology Inc.
179. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors – Physics and Materials Properties, (Springer-Verlag, Germany, 1996).
180. W. Thei, Optical properties of porous silicon, Surf. Sci. Rep. 29, 91 (1997).
181. B. G. Streetman, Solid State Electronic Devices, (Prentice-Hall, NJ, 1995), 4th Edition, p. 97.
182. E. Pelletier, Handbook of Optical Constants of Solids II, E. D. Palik, Editor, (Academic, New York, 1991), p. 65.
183. D. E. Aspnes, Optical properties of thin films, Thin Solid Films 89, 249 (1982).
184. C. Kittel, Introduction to Solid State Physics, (John Wiley & Sons, Inc., NY, 1996), pp. 381-390.
185. H. R. Philipp, Handbook of Optical Constants of Solids, in E. D. Palik, Editor, (Academic, New York, 1985), pp. 759 and 774.
186. H.-W. Chen, D. Landheer, T.-S. Chao, J. E. Hulse, and T.-Y. Huang, X-Ray photoelectron spectroscopy of gate-quality silicon oxynitride films produced by annealing plasma-nitrided Si(100) in nitrous oxide, J. Electrochem. Soc. 148, F140 (2001).
187. G. E. Jellison, Jr., Optical functions of silicon determined by two-channel polarization modulation ellipsometry, Opt. Mater. 1, 41 (1992).
188. C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation, J. Appl. Phys. 83, 3323 (1998).
189. A. H. Carim and R. Sinclair, The evolution of Si/SiO2 interface roughness, J. Electrochem. Soc., 134, 741 (1987).
190. G. E. Jellison, Jr, Examination of thin SiO2 films on Si using spectroscopic polarization modulation ellipsometry, J. Appl. Phys. 69, 7627 (1991).
191. Y. J. Cho, Y. W. Lee, H. M. Cho, I. W. Lee and S. Y. Kim, Ellipsometric examination of optical property of the Si–SiO2 interface using the s-wave antireflection, J. Appl. Phys. 85, 1114 (1999).
192. S. Kamiyama, P.-Y. Lesaicherre, H. Suzuki, A. Sakai, I. Nishiyama, and A. Ishitani, Ultrathin tantalum oxide capacitor dielectric layers fabricated using rapid thermal nitridation prior to low pressure chemical vapor deposition, J. Electrochem. Soc. 140, 1617 (1993).
193. M. C. Gilmer, T. -Y. Luo, H. R. Huff, M. D. Jackson, S. Kim, G. Bersuker, P. Zettzoff, L. Vishnubhotla, G. A. Brown, R. Amos, D. Brady, V. H. C. Watt, G. Gale, J. Guan, B. Nguyen, G. Williamson, P. Lysaght, K. Torres, F. Geyling, C. F. H. Gondran, J. A. Fair, M. T. Schulberg and T. Tamagawa, Process and manufacturing challenges for high-k gate stacks systems, Mater. Res. Soc. Symp. Proc. 567, 323 (1999).
194. D. J. DiMaria, Explanation for the polarity dependence of breakdown in ultrathin silicon dioxide films, Appl. Phys. Lett. 68, 3004 (1996).
195. H. Haruta and M. Honda, Agilent Technologies Impedance Measurement Handbook, (Agilent technologies, 2000), 2nd Edition.
196. See, Agilent 4140B Picoampere Meter User Guide, from Agilent Technologies.
197. See, Agilent 4156B Semiconductor Parameter Analyzer User Guide, from Agilent Technologies.
198. H. A. Storms, K. F. Brown, and J. D. Stein, Evaluation of a cesium positive ion source for secondary ion mass spectrometry, Anal. Chem. 49, 2023 (1977).
199. B. E. Deal, Standardized terminology for oxide charges associated with thermally oxidized silicon, IEEE Trans. Electron Devices 27, 606 (1980).
200. D. K. Schroder, Semiconductor Material and Device Characterization, (John Wiley & Sons, NY, 1998).
201. B. J. Gordon, C-V plotting, myths and methods, Solid State Technol. January, 57 (1993).
202. J.-G. Hwu, M.-J. Jeng, W.-S. Wang, and Y.-K. Tu, Clockwise C-V hysteresis phenomena of metal/tantalum-oxide/silicon-oxide/silicon (p) capacitors due to leakage current through tantalum oxide, J. Appl. Phys. 62, 4277 (1987).
203. S. K. Zhang, Z. W. Fu, L. Ke, F. Lu, Q. Z. Qin, and X. Wang, Properties of interface state at Ta2O5/n-Si interfaces, J. Appl. Phys. 84, 335 (1998).
204. A. Goetzberger and J. C. Irvin, Low-temperature hysteresis effects in metal-oxide silicon capacitors caused by surface-state trapping, IEEE Trans. Electron Dev. 15, 1009 (1968).
205. E. H. Nicollian and J. R. Brews, MOS Physics and Technology, (John Wiley & Sons, New Jersey, 1982).
206. R. Lindner, Semiconductor surface varator, Bell Syst. Tech. J. 41, 803 (1962).
207. L. M. Terman, An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes, Solid-State Electron. 5, 285 (1962).
208. J.-G. Hwu and M.-J. Jeng, C-V hysteresis instability in aluminum/tantalum oxide/silicon oxide/silicon capacitors due to postmetallization annealing and Co-60 irradiation, J. Electrochem. Soc. 135, 2808 (1988).
209. H. Kato, K. S. Seol, M. Fujimaki, T. Toyoda, Y. Ohki, and M. Takiyama, Effect of ozone annealing on the charge trapping property of Ta2O5-Si3N4-p-Si capacitor grown by low-pressure chemical vapor deposition, Jpn. J. Appl. Phys. 38, 6791 (1999).
210. Y.-M. Chang, D. Birnie III, and W. D. Kingery, Physical Ceramics (John Wiley & Sons, New York, 1997), p. 110.
211. G. Lucovsky, Y. Wu, H. Niimi, V. Misra, and J. C. Phillips, Bonding constraints and defect formation at interfaces between crystalline silicon and advanced single layer and composite gate dielectrics, Appl. Phys. Lett. 74, 2005 (1999).
212. K.-A. Son, A. Y. Mao, B. Y. Kim, F. Liu, E. D. Pylant, D. A. Hess, J. M. White, D. L. Kwong, D. A. Roberts and R. N. Vrtis, Ultrathin Ta2O5 film growth by chemical vapor deposition of Ta(N(CH3)2)5 and O2 on bare and SiOxNy-passivated Si(100) for gate dielectric applications, J. Vac. Sci. Technol. A 16, 1670 (1998).
213. A. Y. Mao, K.-A. Son, D. A. Hess, L. A. Brown, J. M. White, D. L. Kwong, D. A. Roberts, and R. N. Vrtis, Annealing ultra thin Ta2O5 films deposited on bare and nitrogen passivated Si(100), Thin Solid Films 349, 230 (1999).
214. P. C. Joshi and M. W. Cole, Influence of postdeposition annealing on the enhanced structural and electrical properties of amorphous and crystalline Ta2O5 thin films for dynamic random access memory applications, J. Appl. Phys. 86, 871 (1999).
215. H. Ono, Y. Hosokawa, T. Ikarashi, K. Shinoda, N. Ikarashi, K. Koyanagi and H. Yamaguchi, Formation mechanism of interfacial Si-oxide layers during postannealing of Ta2O5/Si, J. Appl. Phys. 89, 995 (2001).
216. S. W. Park and H. B. Im, Effects of oxidation conditions on the properties of tantalum oxide films on silicon substrate, Thin Solid Films 207, 258 (1992).
217. R. R. Razouk and B. E. Deal, Dependence of interface state density on silicon thermal oxidation process variables, J. Electrochem. Soc. 126, 1573 (1979).
218. M. Niwano, T. Miura, Y. Kimura, R. Tajima, and N. Miyamoto, Real-time, in situ infrared study of etching of Si(100) and (111) surfaces in dilute hydrofluoric acid solution, J. Appl. Phys. 79, 3708 (1996).
219. Y. Wang, S. F. Y. Li, and J. H. Ye, In situ electrochemical ATR-FTIR spectroscopic investigation of hydrogen-terminated Si(110) surface in dilute NH4F solution, J. Electrochem. Soc. 148, E439 (2001).
220. H. Sawada and K. Kawakami, Electronic structure of oxygen vacancy in Ta2O5, J. Appl. Phys. 86, 956 (1999).
221. J.-L. Su, C.-C. Hong, and J.-G. Hwu, Enhanced thermally induced stress effect on an ultrathin gate oxide, J. Appl. Phys. 91, 5423 (2002).
222. P. Smeys, P. B. Griffin, Z. U. Rek, I. De Wolf, and K. C. Saraswat, Influence of process-induced stress on device characteristics and its impact on scaled device performance, IEEE Trans. Electron Dev. 46, 1245 (1999).