簡易檢索 / 詳目顯示

研究生: 吳善融
Wu, Shan-Jung
論文名稱: 應用PIV量測技術於背向階梯流場之探討
PIV measurements of turbulent backward facing-step flow field
指導教授: 張克勤
Chang, Keh-Chin
王覺寬
Wang, Muh-Rong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 74
中文關鍵詞: 背向階梯流場田口式熱線測速儀
外文關鍵詞: PIV
相關次數: 點閱:64下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要在提升PIV量測應用於背向階梯流場(backward- facing step)的可靠度。由於PIV量測需要在流場中加入追蹤粒子來反映流體運動,因此原始流體的運動是否會因為粒子的加入而改變,是PIV量測首先必須面對的問題。
    本實驗的流場中包含許多複雜的流體運動,尤其是存在著迴流區及剪力流層等速度梯度大的區域。在這些速度變化急遽的地方,追蹤粒子很容易會因為慣性力脫離原本的流體運動,或是堆積在渦流內發生碰撞,造成追蹤粒子與流場運動不一致。此外,追蹤粒子在空間分佈上變的很不均勻,這些現象都會造成PIV量測上嚴重的誤差。因此,在不改變原始流場特性及現有設備的情形下,本研究針對在迴流區下游的截面,以影像後處理的方式來克服上述這些問題。除了影像後處理外,另外還搭配田口式參數分析來找出最佳的參數組合。最後以熱線測速儀在不同雷諾數下( Reθ = 505 及808 )不同截面( x = 9.87 h及12.92 h) 的結果作為比較的基準,判斷估算出來的參數組合是否確實為最佳參數組合,並具有一致性。
    實驗結果顯示,影像後處理與田口式參數分析確實能夠有效改善PIV量測的結果,但是所求出的最佳參數組合在不同的雷諾數下缺乏一致性。此外,對不同的速度特性也有不一樣的表現。對於這樣的結果,本研究推測可能是因為所選擇的參數之間交互效應太強,亦或者是對此流場最關鍵的參數並沒有被考慮到。
    另外,在重新修正參數水準及選取有效數據的範圍後,Reθ = 505的最佳參數組合表現仍不如預期,但是在Reθ = 808的實驗條件下,最佳化後的結果確實比原始實驗設定的組合要好。兩者表現不一的原因是因為初始動量厚度的增加,使得Reθ = 808在相同位置較接近完全發展紊流,而Reθ = 505則因為仍受到大尺度渦流的影響,造成追蹤粒子分佈不均,進而影響數據的可靠度。此結果同時也說明了慎選可靠數據的範圍能有效提升田口氏最佳參數分析的正確性。

    The object of this research is to promote the reliability of PIV measurements when applied to backward-facing step flow field. The velocities of fluid are determined by the motion of the tracer particles which are introduced into the flow. However, do the tracer particles influence the original flow field or follow the fluid motion faithfully? This seeding problem is the major issue to be faced in the PIV measurements.
    There are many complicated fluid motions exhibited in the backward-facing step flow field, especially in the large velocity gradient regions such as the recirculation zone and the shear layer. In these regions, parts of the tracer particles cannot follow the fluid motion exactly due to their inertial forces or collide with each other in the vortex. The distribution of the tracer particles is non-uniform in some regions of the flow field. This phenomenon sometimes results in serious errors of PIV measurements. This research aims at solving above mentioned problems with the aides of image post-processing and Taguchi method. The data measured by a two-component hot-wire anemometer are used as the comparison basis. Two cases with Reynolds numbers of Reθ = 505 and 808 are conducted in the study.
    The results show that the image post-processing and Taguchi method are two effective means to improve PIV measurements. However the optimal sets behave non-identically between the two different Reynolds numbers and different velocity properties ( e.g., mean or fluctuation values). The strong interactions between chosen parameters or the miss of key parameters in the study might cause this problem.
    After adjusting the parameters and re-defining the range of valid data, the optimal set of Reθ = 505 still behaves worse than the original sets, whereas the other optimal set ( Reθ = 808 ) behaves properly. The different performances between them might be attributed to different initial momentum thicknesses formed in these two cases. The flow field reaches its fully states sooner due to thicker momentum thickness ( Reθ = 808 ) while the thinner case is still influenced by the large scale vortex, which in turn result in the non-uniform distribution of tracer particles. It also demonstrates that the necessity of the care definition of valid data range in the use of Taguchi method.

    摘要 I Abstract III 誌謝 VI 目錄 VIII 圖目錄 X 符號定義: XIV 第一章 緒論 1 1-1前言 1 1.2文獻回顧 2 1.2.1 背向階梯流場 ( backward-facing step, BFS ) 2 1.2.2 PIV量測 7 1.3 研究目標 10 第二章 實驗設備及方法 12 2.1 實驗設備 12 2.1.1 開放式吸入式風洞 12 2.1.2 PIV設備:雷射光源、高速攝影機、粒子植入裝置 13 2.1.2-1高速攝影機 13 2.1.2-2 紅外線半導體脈衝雷射 ( diode solid state laser ) 13 2.1.2-3同步器 ( timing hub ) 13 2.1.2-4 粒子植入裝置 ( seeding device ) 14 2.1.3. 熱線測速儀 15 2.2 實驗方法 15 2.2.1 熱線測速儀 15 2.2.2 PIV量測原理 16 2.2.3田口式 ( Taguchi ) 實驗參數分析 18 第三章 結果與討論 24 3.1 熱線測速儀之結果分析 24 3.1.1 熱線測速儀與皮托管比較 24 3.1.2 熱線測速儀頻譜分析 26 3.2 PIV量測結果之分析 28 3.2.1 影像張數統計平均 28 3.2.2 田口式分析 28 第四章 結論與建議 34 第五章 參考文獻 37 自述 74

    [1] V. de Brederode, P. Bradshaw, 1972, “Three-
    dimensional flow in nominally two-dimensional
    separation bubbles”, Imperial College of
    Science and Technology, Technical Aero Report No. 72-
    19.

    [2] F. Scarano, and M. L. Riethmuller,1999, “Iterative
    multigrid approach in PIV image processing with
    discrete window offset,” Experiments in fluids,
    Vol.26, pp.513–523.

    [3] B. F. Armaly, F. Durst, J. C. F. Pereira, B.
    Schönung , 1983,“Experimental and theoretical
    investigation of backward-facing step flow”, Journal
    of Fluid Mechanics, Vol. 127, pp. 473-496.

    [4] 黃興閎,2004,背向階梯流場之剪流層非穩態特性之研究,清
    華大學碩士論文

    [5] David M. Driver, H. Lee Seegmiller, Joe G. Marvin,
    1987, “Time-dependent behavior of a reattaching shear
    layer”, AIAA, Vol.25, No.7, pp.914-919.

    [6] J.K.Eaton, J.P.Johnston,1981 ,Sep., “A review of
    research on subsonic turbulent flow reattachment”,
    AIAA, Vol.19, No.9, pp.1093-1100.

    [7] D. M. Kuehn, 1980, March, ”Some effects of adverse
    pressure gradient on the incompressible reattaching
    flow over a rearward -facing step”, AIAA, Vol.18,
    pp.343-344.

    [8] E.W. Adams, J.P. Johnston, 1988, ”Effects of the
    separating shear layer on the reattachment flow
    structure Part 1: Pressure and turbulence
    quantities”, Experiments in fluids, Vol.6, pp.493-499.

    [9] S. Pronchick, S. Kline, 1983, “An experimental
    investigation of the structure of a turbulent
    reattaching flow behind a backward-facing step”,
    Stanford University, Mechanical Engineering Dept.,
    Rept, MD-42.

    [10] R. L. Simpson, 1989, “Turbulent boundary layer
    separation”, Annual review of fluid mechanics,
    Vol.21, pp.205-324.

    [11] J. Westerweel, 1997, “Fundamentals of digital
    particle image velocimetry”, Measurements science
    and technology, Vol. 8, pp.1379-1392.

    [12] Clayton Crowe, Martin Sommerfeld, Yutaka Tsuji, 1998,
    “Multiphase flows with droplets and particles”, CRC
    Press.[13] R. D. Keane, R. J. Adrian, 1990,
    “Optimization of particle image
    velocimeters. Part I: Double pulsed systems”,
    Measurements science and technology, Vol.1, pp.1202-
    1215.

    [14] R.D. Keane, R. J. Adrian, 1992, “Theory of cross-
    correlation analysis of PIV images”, Applied
    scientific research, Vol.49, pp.191-215.

    [15] J. Westerweel, D. Dabiri, M. Gharib, 1997, ” The
    effect of a discrete window offset on the accuracy of
    cross-correlation analysis of digital PIV
    recordings”, Experiments in Fluids, Vol. 23, pp.20-
    28.

    [16] P. Bradshaw, F.Y.F. Wong, 1972, ”The reattachment
    and relaxation of a turbulent shear layer”, Journal
    of fluid mechanics., Vol.52, part1, pp.113-135.

    [17] Integrated Design Tools, Inc., 2006 Oct., “MotionPro
    X Timing Hub:Cross-platform user manual:
    Synchronization unit”.

    [18] C. Kähler, B. Sammler, J. Kompenhans, 2002,
    “Generation and control of tracer particles for
    optical flow investigation in air”,Experiment in
    Fluids, Vol. 33, No. 6, pp.736-742.

    [19] Integrated Design Tools, Inc., 2006 Oct.,
    “MotionPro X Camera:cross-platform user manual high-
    speed CMOS digital camera”.

    [20] Chiuan-Ting Li, Keh-Chin Chang, Muh-Rong Wang, 23-25
    Sept. 2007, “Parametric study on PIV measurement of
    turbulent flow in planar mixing layer”, 2nd
    International Symposium on Advanced
    Fluid/Solid Science and Technology in Experimental
    Mechanics, Osaka, Japan.

    [21] Integrated Design Tools, Inc., 2007 March.,
    “proVISION-XS: User manual-Particle image
    velocimetry”.

    [22] 井上成喜、八木伸行等人著,吳上立、林宏墩譯,C語言數位
    影像處理,全華科技圖書股份有限公司,2006年3月

    [23] R. J. Adrian, 1 November 1986, ”An image shifting
    technique to resolve directional ambiguity in double-
    pulsed velocimetry” ,Vol.25, No.21, Applied optics.

    [24] M. Raffel, C. Willert, J. Kompenhans, 1998,
    “Particle image velocimetry”, Springer.

    [25] H. Nobach, C. Tropea, 2005, “Improvements to PIV
    image analysis by Recognizing the velocity
    gradient”, Experiments in fluids, Vol. 39, pp.612-
    620.

    下載圖示 校內:立即公開
    校外:2008-08-27公開
    QR CODE