簡易檢索 / 詳目顯示

研究生: 林宗翰
Lin, Tzung-han
論文名稱: AlGaN/GaN 高電子遷移率電晶體為pH值感測器的應用
ALGAN/GAN HIGH ELECTRON MOBILITY TRANSISTORS AS pH - SENSITIVE DETECTOR
指導教授: 張允崇
Chang, Yun-Chorng
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 64
中文關鍵詞: 感測器高電子遷移率電晶體
外文關鍵詞: sensor, HEMT
相關次數: 點閱:53下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    在這個論文中,我們以AlGaN/GaN High Electron Mobility Transistors (HEMTs)的研究為基礎,並將其應用於液體pH值的量測。在論文的第一部分中,從HEMTs的基本電性及霍爾量測中,可以發現當溫度下降時,HEMTs的通道電子遷移率會提高而通道電子濃度則會降低。但是溫度對通道電子濃度的影響小於對遷移率的影響,所以相同電壓下在低溫時會得到較高的電流,因此溫度對元件特性會有相當的影響。另外我們同時發現在量測的過程中,若是照射到室內照明,都會影響量測結果。因此進行pH值液體感測實驗時必須將光以及溫度的環境影響排除。
    接著我們就利用製作好的HEMT應用在pH液體感測實驗中,我們發現在定電壓的操作模式下,drain-source兩電極間的電壓會隨著 液體pH值的下降而增加。從量測結果可以判斷目前元件靈敏度可達到0.1pH以下。而感測液體的溫度上升時,我們發現感測靈敏度也會提高。HEMT的感測能力,一般推測是來自於元件表面狀態的改變。當感測液體中氫離子濃度越高時,表面會有較高的帶正電荷表面電荷濃度,使得通道電子濃度也隨之上升。相同的感測液體中氫氧根離子濃度越高,表面會有較高的帶負電荷表面電荷濃度,使得通道電子濃度也隨之下降。於是我們進一步進行元件接面位勢的量測實驗。實驗結果發現每改變1個pH值時,接面位勢改變46.77mV,更進一步分析我們可以推測出每改變一個通道電子濃度,表面電荷需改變1056個。
    在了解HEMTs應用於pH值感測的操作原理後,我們緊接著提出新的設計,希望利用製作差動放大的原理來達成更高靈敏度的pH值感測元件。此外我們也設計pH感測陣列元件希望來同時且快速的量測不同位置的pH值變化。這些新的元件的製成,能更進一步提高我們對此元件的了解以及發展出更多不同領域上的應用。

    Abstract
    In this disseration, the fundamental properties of AlGaN/GaN high electron mobility transistors (HEMTs) and their application as pH sensors were investigated. First, the electron mobilities for the HEMTs increase as the ambient temperatures decreases. In the other hand, the sheet carrier density also decreases. The observed current between electrodes increases because the effect of the mobility increases is larger than the effect of the sheet carrier density decreases. We also found that the experitmental results is also affected by the ambient light illumination. Therefore, the effects from the ambient temperature changes or the light illumination must be suppressed for an accurate pH measurement.
    The fabricated AlGaN/GaN HEMT devices were then used to measure pH value for a liquid. It was observed that the voltage drop between the drain-source electrodes increases as the pH value of the liquid decreases when constant current flow between the electrodes. The device was able to distinguish a 0.1 pH change in the liquid. It was also observed that the sensitivity increases as the temperature of the liquid increases. The pH sensing ability is believed to be originated from the change of the surface states of the device. More positively charged surface states presented in the surface area when the concentration of H+ increases in the liqud. In the other hands, more negatively charged surface states presented when the OH- concentration increase in the liquid. A further surface potential investigation reveals that the surface potential change 46.77 mV for each pH value changes. It is proposed that a change of 1056 surface charges is required for each channel carrier density change.
    The previous experiments helped us understand the operations of the pH sensors and paving the way for newer device designs. A newer and high sensitivity design is proposed utilizing the techniques of differential amplifying. In addition, a design of pH sensor arrays is also proposed in order to measure the pH value at different locations simultaneously. The fabrications of these new devices will help us further understand the operations of the pH sensors and develop newer applications in different fields.

    目錄 中文摘要 Ι 英文摘要 ΙΙI 致謝 VI 目錄 VII 圖目錄 IX 第一章 導論 1-1 前言 1 1-2 二維電子氣(2DEG)的形成 2 1-3 AlGaN/GaN高電子遷移率電晶體(HEMT) 3 1-4 光與熱對AlGaN/GaN高電子遷移率電晶體的影響 8 1-5 AlGaN/GaN高電子遷移率電晶體做為pH值感測器的應用 12 1-6 霍爾效應 17 第二章 元件製作以及實驗setup 2-1 元件結構介紹 20 2-2 AlGaN/GaN高電子遷移率電晶體做為感測器製程 21 2-3 實驗裝置與儀器 2-3-1 元件變溫特性量測 23 2-3-2 光效應實驗 25 2-3-3 pH值感測實驗 26 第三章 實驗環境條件量測 3-1 直流量測 3-1-1 霍爾量測 28 3-1-2 基本電壓電流特型量測 32 3-2 實驗條件量測 3-2-1 元件變溫特性量測 35 3-2-2 光效應實驗 38 第四章 pH值感測實驗與結果討論 4-1 pH值精確度感測 40 4-2 pH值變溫感測實驗 42 4-3 pH值感測實驗結果探討 46 第五章 結論 5-1 結論 54 5-2 未來工作 5-1-1 差動放大pH值感測器元件的製作與設計 56 5-1-2 pH值感測陣列製作與設計 59 REFERENCES 61 自傳 63

    REFERENCES
    [1] U. K. Mishra, P. Parikh, and Y.-F. Wu, “AlGaN/GaN HEMTs—An Overview of Device Operation and Applications”, Proc. IEEE 90, pp.1022 (2002).

    [2] A. P. Zhang, L. B. Rowland, E. B. Kaminsky, J. B. Tucker, J. W. Kretchmer, A. F. Allen, J. Cook, and B. J. Edward ,” 9.2 W/mm (13.8 W) AlGaN/GaN HEMTs at 10 GHz and 55V drain bias”,Electron. Lett. 39, pp.245 (2003)

    [3] M. Stutzmann, G. Steinhoff, M. Eickhoff, O. Ambacher, C.E. Nebel, J. Schalwig, R. Neuberger, G. Muller “GaN-base heterostructures for sensor applications”, Diamond and Related Materials 11 ,(2002) pp.886-891

    [4] R. Gaska M. S. Shura) and A. D. Bykhovski A. O. Orlov and G. L. Snider “Electron mobility in modulation-doped AlGaN–GaN heterostructures” ,APPLIED PHYSICS LETTERS VOLUME 74,
    NUMBER 2

    [5] J. Schalwig, G. Mu¨lle, M. Eickhoff, O. Ambacher, M. Stutzmann “Gas sensitive GaN/AlGaN-heterostructures”, Sensors and Actuators B 87, (2002) pp.425–430

    [6] B. S. Kang, J. Kim, S. Jang, and F. Ren J. W. Johnson, R. J. Therrien, P. Rajagopal, J. C. Roberts, E. L. Piner, and K. J. Linthicum S. N. G. Chu K. Baik, B. P. Gila, C. R. Abernathy, and S. J. Pearton
    “Capacitance pressure sensor based on GaN high-electron-mobility transistor-on-Si membrane” APPLIED PHYSICS LETTERS 86, pp.253502 (2005)

    [7] Georg steinhoff, Oliver Purrucker, Motomu Tanaka, Martin stutzmann, and Martin Eickhoff “AlGaN-A New Material System for Biosensors”, Adv. Funct. Mater. 2003, 13, No. 11, November

    [8] B.S. Kang , G. Louche , R.S. Duran , Y. Gnanou , S.J. Pearton , F. Ren ” Gateless AlGaN/GaN HEMT response to block co-polymers”, Solid-State Electronics 48, (2004) pp.851–854
    [9] B. S. Kang and F. Ren L. Wang, C. Lofton, and Weihong W. Tan S. J. Pearton A. Dabiran, A. Osinsky, and P. P. Chow “Electrical detection of immobilized proteins with ungated AlGaN/GaN high-electron-mobility Transistors”, APPLIED PHYSICS LETTERS 87, pp.023508 (2005)

    [10] B. S. Kang, SuKu Kim, F. Ren, K. Ip, Y. W. Heo, B. Gila, C. R. Abernathy, D. P. Norton, and S. J. Pearton ”Detection of C2H4 Using Wide-Bandgap Semiconductor Sensors AlGaN/GaN MOS Diodes and Bulk ZnO Schottky Rectifiers”, Journal of The Electrochemical Society, 151(7), pp.G468-G471 (2004)
    [11] Donald A. Neamen “Semiconductor Physics & Devices”
    [12] 施敏“SEMICONDUCTOR DEVICES Physics and Technology”
    [13] Takashi Mizutani, Yutaka Ohno, M. Akita, Shigeru Kishimoto, and Koichi Maezawa, “A Study on Current Collapse in AlGaN/GaN HEMTs Induced by Bias Stress”, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 50, NO. 10, OCTOBER 2003

    [14] R. Gaska , M. S. Shur and A. D. Bykhovski , A. O. Orlov and G. L. Snider “Electron mobility in modulation-doped AlGaN–GaN heterostructures” , APPLIED PHYSICS LETTERS, VOLUME 74, NUMBER 2 (1999)

    [15] G. Steinhoff and M. Hermann W. J. Schaff and L. F. Eastman M. Stutzmann and M. Eickhoff “pH response of GaN surfaces and its application for pH-sensitive field-effect transistors” ,APPLIED PHYSICS LETTER, VOLUME 83, NUMBER 1

    [16] M. Stutzmann , G. Steinhoff , M. Eickhoff , O. Ambacher , C.E. Nebel , J. Schalwig , R. Neuberger, G. Muller “GaN-based heterostructures for sensor applications” Diamond and Related Materials 11 (2002) 886–891

    [17] M. Bayer, C. Uhl, and P. Vogl “Theoretical study of electrolyte gate AlGaN/GaN field effect transistors” JOURNAL OF APPLIED PHYSICS 97, 033703 (2005)

    下載圖示 校內:2007-07-24公開
    校外:2007-07-24公開
    QR CODE