研究生: |
馮翼 Feng, Yi |
---|---|
論文名稱: |
具十位元連續逼近式類比數位轉換器與交流偏移電壓校正之CMOS-MEMS電容式加速規後端處理電路 Post-Processing Circuits for CMOS-MEMS Capacitive Accelerometer With 10-bit SAR ADC and AC Offset Calibration Technique |
指導教授: |
魏嘉玲
Wei, Chia-Ling |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 137 |
中文關鍵詞: | 偏移電壓抑制 、連續逼近式類比數位轉換器 、電容式加速度感測器 、全差分電容電橋 、訊號處理電路 |
外文關鍵詞: | Offset Cancellation Circuit, SAR ADC, Capacitive Accelerometer, Fully Differential Capacitive Bridge, Signal Processing Circuit |
相關次數: | 點閱:94 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,隨著少子化問題日益嚴重與平均壽命不斷成長,未來將會面臨醫護人員嚴重不足的困境,因此穿戴式醫療裝置、遠端醫療等科技將能降低醫護人員的負擔。本論文將實現一單軸電容式加速度感測系統,應用於穿戴式裝置上,因此選用CMOS-MEMS製程來實現此系統,以達到小體積、低功耗及低成本之訴求。此外,由於感測器不匹配會導致交流偏移電壓,經過後端處理電路後,會轉為直流偏移,容易導致輸出飽和,因此提出了偏移消除迴路,來抑制交流偏移電壓以及直流偏移電壓。另外為了方便分析加速度訊號,因此使用了10位元之連續逼近式類比數位轉換器,將加速度訊號轉為數位碼。
本晶片採用台灣積體電路公司(TSMC) 0.35μm CMOS/MEMS 2P4M 3.3V混合訊號製程加上微機電後製程製作,選用48 S/B封裝,晶片總面積為2.834×2.201 mm2,包含感測器與訊號處理電路。由加速度振動量測平台(Shaker)提供穩定的加速度應力,可量測範圍為±14g,其靈敏度為218.4 (mV/g),全系統含感測器之總消耗功率為2.4mW。
Owing to the sub-replacement fertility and the growth of life expectancy recently, we will face the severe shortage of the medical personnel in the future. One of the solutions is to combine high technologies with medical industry, such as wearable devices and telemedicine, which can alleviate health care workers’ burdens. Therefore, this thesis adopted CMOS-MEMS process to implement the system due to its low size, low power and low cost. However, the mismatch between the MEMS sensor may induce ac offset which is converted into dc offset by post-processing circuits and makes the output signals saturate, so the offset cancellation loop is proposed to inhibit the offset voltage. The SAR ADC is implemented to convert the output signals to digital codes in order to analyze the acceleration signal easily.
The proposed chip, fabricated by Taiwan Semiconductor Manufacturing Company (TSMC) 0.35μm 2P4M mixed-signal standard CMOS process and MEMS post process, consists of the front-end sensor and the back-end signal processing circuits, and it occupies 2.834×2.201 mm2 area with 48 S/B package. The measured sensitivity is 218.4 (mV/g) within ±14g sensing range, and the power consumption is 2.4mW with a 3.3V power supply.
[1] 匯流新聞網(2018),「跌倒偵測、顧心臟!Apple Watch新功能好健康」,參考來源:https://cnews.com.tw/002181106a03/
[2] M. Haris and H. Qu, “A CMOS-MEMS Piezoresistive Accelerometer with Large Proof Mass,” in Proc. 5th IEEE Int. Conf. on Nano/Micro Engineered and Molecular Systems (NEMS), Xiamen-China, Jan. 2010, pp. 309–312.
[3] C. Saayujya, J. S.-Q. Tan, Y. Yuan, Y.-R. Wong, and H. Du, “Design, fabrication and characterization of a zinc oxide thin-film piezoelectric accelerometer,” in Proc. IEEE 9th Int. Conf. on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), Singapore, Apr. 2014, pp.1–6.
[4] D. Goustouridias, G. Kaltsas, and A. G. Nassiopoulou, “A silicon thermal accelerometer without solid proof mass using porous silicon thermal isolation,” IEEE Sensors J., vol. 7, no. 7, pp. 983–989, Jul. 2007.
[5] S.-M. Tseng, “Single-Axis CMOS-MEMS Capacitive Accelerometer with Post-Processing Circuits,” M.S. thesis, Dept. of Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., Jan. 2017.
[6] D. Fang, “Low Noise and Low Power Interface Circuit Design for Integrated CMOS MEMS Inertial Sensors,” Ph.D.dissertation, Dept. of Elect. & Comp. Eng.,Univ.of Florida, Florida, U.S.A., May2006.
[7] G. Royo, M. Garcia-Bosque, C. Sánchez-Azqueta, C. Aldea, S. Celma, and C. Gimeno, “Transimpedance amplifier with programmable gain and bandwidth for capacitive MEMS accelerometers,” in IEEE International Instrumentationand Measurement Technology Conference (I2MTC), Italy,May 2017, pp.1–5.
[8] J.Jun, C.Rhee,S. Kim, and S. Kim, “An SC Interface With Programmable-Gain Embedded ΔΣADC for Monolithic Three-Axis 3-D Stacked Capacitive MEMS Accelerometer,” IEEE Sensors Journal, vol. 17, no. 17, Sept. 2017.
[9] A.-Y. Chang, and P.-C Chen., Lecture Notes for CMOS MEMS Sensor Design Concept, National Applied Research Laboratories, Hsinchu, Taiwan, R.O.C., Jul. 2015.
[10] K. Nagaraj, “A parasitic-insensitive area-efficient approach to realizing very large time constants in switched-capacitor circuits,” IEEE Trans. Circuits Syst., vol. 36, no. 9, pp. 1210–1216, Sep. 1989.
[11] Heng-Yu Chiu, “Design of a Single-Axis Capacitive Accelerometer with AC Offset Cancellation Circuit”, M.S. thesis, Dept. of Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., July. 2019.
[12] Y.-C. Lin, “Design of a Temperature-Insensitive Micro Cantilever-Based Respiration Detection Chip,” M.S. thesis, Dept. of Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., Jun. 2013.
[13] J. Wu, G. K. Fedder, and L. R. Carley, “A low-noise low-offset capacitive sensing amplifier for a 50-μg/√Hz monolithic CMOS MEMS accelerometer,” IEEE J. Solid-State Circuits, vol. 39, no. 5, pp. 722–730, May 2004.
[14] H. Sun, D. Fang, K. Jia, F. Maarouf, H. Qu, H. Xie, "A low-power low-noise dual-chopper amplifier for capacitive CMOS-MEMS accelerometers", IEEE Sens. J., vol. 11, no. 4, pp. 925-933, 2011.
[15] P.-C. Wu, B.-D. Liu, S.-H. Tseng, H.-H. Tsai, and Y.-Z. Juang, “Digital Offset Trimming Techniques for CMOS MEMS Accelerometers,” IEEE Sensors Journal, vol. 14, no. 2, pp. 570–577, Feb. 2014.
[16] C.-T.Chiang, “Design of a CMOS MEMS Accelerometer Used in IoT Devices for Seismic Detection,”IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 8, no. 3, Sept. 2018, pp. 566–577.
[17] B. Grinberg, A.Feingold, L.Furman, and R.Wolfson, “High precision open-loop and closed-loop MEMS accelerometers with wide sensing range,” in IEEE/ION Position, Location and Navigation Symposium (PLANS), U.S.A., Apr. 2016, pp.924–931.
[18] H.Xu, X.Liu,and L.Yin, “A Closed-Loop Ʃ∆ Interface for a High-Q Micromechanical Capacitive Accelerometer With 200 ng/√Hz Input Noise Density,” IEEE Journal of Solid-State Circuits, vol. 50, no. 9, Sept. 2015.
[19] W. Li , F. Li , Z. Wang , High-Resolution and High-Speed Integrated CMOS AD Converters for Low Power Applications, Springer, 2018
[20] S. Pavan, R. Schreier, and G. C. Temes, Understanding Delta-Sigma Data Converters, Wiley-IEEE Press, 2017
[21] Hseuh-Yu Kao, “Design of Sensing Circuit for Lead-Free Piezoelectric MEMS Accelerometers”, M.S. thesis, Dept. of Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., July. 2019.
[22] M. van Elzakker, E. van Tuijl, P. Geraedts, D. Schinkel, E. Klumperink, and Bram Nauta, “ A 1.9mW 4.4fJ/Conversion-step 10b 1MS/s Charge-Redistribution ADC”, ISSCC Dig. Tech. Papers, pp. 244–245, Feb. 2008.
[23] C. C. Liu, S. J. Chang, G. Y. Huang, and Y. Z. Lin, “A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 731–740, Apr. 2010.
[24] Z. Cao, S. Yan, Y. Li, "A 32mW 1.25GS/s 6b 2b/step SAR ADC in 0.13µm CMOS", IEEE ISSCC Dig. Tech. Papers, pp. 542-543, 2008.
[25] Kai-Ming Chang, “A Resistor-Based Temperature Sensing Chip with a 10-bit SAR ADC”, M.S. thesis, Dept. of Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., June. 2018.
[26] Y. Zhu, C.-H. Chan, U.-F. Chio, S.-W. Sin, S.-P. U, R. Martins, F. Maloberti, "A 10-bit 100-MS/s reference-free SAR ADC in 90 nm CMOS", IEEE J. Solid-State Circuits, vol. 45, no. 6, pp. 1111-1121, 2010.
[27] C.-L. Wei, Y.-W. Wang, and B.-D. Liu, “Wide-Range Filter-Based Sinusoidal Wave Synthesizer for Electrochemical Impedance Spectroscopy Measurements,” IEEE Transactions on Biomedical Circuits and Systems (TBCAS), vol. 8, no. 3, pp. 442–450, Jun. 2014.
[28] C. P. Huang, H. W. Ting, and S. J. Chang, “Analysis of nonideal behaviors based on INL/DNL plots for SAR ADCs,” IEEE Trans. Instrum. Meas., vol. 65, no. 8, pp. 1804–1817, Aug 2016.
[29] National Instruments Corporation,"The Fundamentals of FFT-Based Signal Analysis and Measurement,” Application Notes 041, July 2000
[30] 101傳媒(2017), 「全球少子化問題 嚴重侵襲各國」, 參考來源:https://www.101newsmedia.com/news/42917
[31] Lecture notes of S. C. Lu
[32] M. Yucetas, J. Salomaa et al., "A closed-loop SC interface for a +1-l.4g accelerometer with 0.33% nonlinearity and 2mg/v Hz input noise density", Solid-State Circuits Conference Digest of Technical Papers (ISSCC) 2010 IEEE International, pp. 320-321, Feb 2010.
[33] P. Lajevardi, V. Petkov, B. Murmann, "A ΔΣ interface for MEMS accelerometers using electrostatic spring constant modulation for cancellation of bondwire capacitance drift", Solid-State Circuits IEEE Journal of, vol. 48, no. 1, pp. 265-275, Jan. 2013.
[34] Ye Zhenhua, Yang Haigang, Yin Tao, Huang Guocheng, Liu Fei, "High-performance closed-loop interface circuit for high-Q capacitive microaccelerometers", IEEE Sensors Journal, vol. 13, no. 5, pp. 1425-1433, May 2013.