| 研究生: |
陸詩羽 Lu, Shih-Yu |
|---|---|
| 論文名稱: |
纖維母細胞生長因子九於脂肪幹細胞進行神經球生成過程中所扮演的角色 Role of Fibroblast Growth Factor 9 in Neurosphere Formation of Adipose-derived Stem Cells |
| 指導教授: |
吳佳慶
Wu, Chia-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 細胞生物與解剖學研究所 Institute of Cell Biology and Anatomy |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 脂肪幹細胞 、纖維母細胞生長因子九 、纖維母細胞生長因子受器 、神經細胞球 、許旺細胞 |
| 外文關鍵詞: | Adipose-derived stem cell, fibroblast growth factor 9, FGF receptors, neurosphere, Schwann cell |
| 相關次數: | 點閱:254 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
脂肪幹細胞 (adipose derived stem cell, ASC) 可從脂肪組織中取得並為細胞療法中重要的幹細胞來源,可分化成神經導向細胞 (neural lineage cell, NLC) 促進損傷後神經再生。纖維母細胞生長因子九 (fibroblast growth factor 9, FGF9) 可以改變幹細胞的增殖及細胞發展。在本論文中,目的是探討神經球形成過程中FGF9的作用,在有無FGF9刺激下以甲殼素 (chitosan) 塗佈之培養皿培養ASC誘導分化成NLC,其中的基因表現以聚合酶連鎖反應 (polymerase chain reaction, PCR) 檢測,蛋白質表現則以西方墨點法和螢光染色觀察,並以訊息傳遞路徑抑製劑或shRNA探究Akt訊息傳遞路徑在神經細胞球形成期間的影響。結果表示,ASC形成的神經細胞球含有NLC和神經膠質細胞,FGF9可誘導神經細胞球往神經膠質細胞分化。Akt、細胞外調節蛋白 (extracellular regulated protein, ERK) 訊息傳遞路徑活化在形成神經細胞球後下降,對於神經細胞球生成而言,訊息傳遞路徑失活化為必備因素。當神經細胞球形成期間加入FGF9會短暫增加Akt訊息傳遞路徑的活化,並且透過Akt抑制劑阻斷Akt訊息傳遞路徑證實Akt訊息傳遞參與在細胞球分化過程中。另外以纖維母細胞生長因子受器二與三 (fibroblast growth factor receptor 2 and 3, FGFR2 and 3) 阻礙抗體與FGFRs之小髮夾核醣核酸 (short hairpin RNA of FGFRs, shFGFRs) 阻礙FGFRs與FGF9作用,觀察神經細胞球形成期間FGF9的主要的受器。當阻礙FGFR2或FGFR2生成阻斷,原由FGF9導致表現提高的NLC標的基因,表現會因此下降。以上結果表示,在神經細胞球生成期間FGF9藉由與FGFR2作用並通過Akt訊息傳遞路徑影響NLC分化。當前研究的發現可能在神經細胞球形成期間可通過調節FGF9含量控制ASC分化成所需的神經譜系細胞。
Adipose-derived stem cells (ASCs) were an ideal cell source for stem cell therapy can promote nerve regeneration after injury. The fibroblast growth factor 9 (FGF9) can alter the proliferation and cell-fate decision in stem cells. In my project, we aim to investigate the role of FGF9 during neurosphere formation of ASCs. We used chitosan- coated dish to culture ASCs to induce sphere formation with or without addition of FGF9. The expression of gene was detected by PCR and the protein expression level was observed by Western blot and IF staining. Besides, we investigated the involvement of potential signaling pathway of FGF9 signaling during the sphere formation using specific inhibitors or shRNA. The results showed the spheres formed by ASCs containing both neuronal and glial lineage cells. Addition of FGF9 induced spheres differentiation into Schwann lineage cells. Then, the activation of Akt, ERK signal pathway was decreased after forming the sphere and the inactivation of signal pathway was necessary for sphere formation. However, the phosphorylation of Akt pathway was transiently preserved by FGF9. Furthermore, the involvement of Akt signaling was confirmed by blockage of Akt signaling. The FGFR2 and 3 blocking antibody and shFGFRs was used to block FGFRs to investigate the major FGFR of FGF9 induced Schwann cell differentiation. The expression of Schwann cell markers induced by FGF9 was decreased when knockdown FGFR2. The result suggested that FGF9 could modulate NLC differentiation by activating Akt signaling via binding with FGFR2 during sphere formation. The finding of current study may show the possibility of differentiating ASCs into desired neural lineage by modulating the level of FGF9 during sphere formation.
Adams, A. M., E. M. Arruda and L. M. Larkin (2012). "Use of adipose-derived stem cells to fabricate scaffoldless tissue-engineered neural conduits in vitro." Neuroscience 201: 349-356.
Arslantunali, D., T. Dursun, D. Yucel, N. Hasirci and V. Hasirci (2014). "Peripheral nerve conduits: technology update." Med Devices (Auckl) 7: 405-424.
Baumann, N. and D. Pham-Dinh (2001). "Biology of oligodendrocyte and myelin in the mammalian central nervous system." Physiol Rev 81(2): 871-927.
Bayat, N., S. Ebrahimi-Barough, M. M. Mokhtari Ardakan and J. Ai (2015). "Human endometrial stem cells may differentiate into schwann cells in fibrin gel as 3D culture." Neuroscience & Medicine 06(04): 160-164.
Bradl, M. and H. Lassmann (2010). "Oligodendrocytes: biology and pathology." Acta Neuropathol 119(1): 37-53.
Butts, B. D., C. Houde and H. Mehmet (2008). "Maturation-dependent sensitivity of oligodendrocyte lineage cells to apoptosis: implications for normal development and disease." Cell Death Differ 15(7): 1178-1186.
Casarosa, S., Y. Bozzi and L. Conti (2014). "Neural stem cells: ready for therapeutic applications?" Mol Cell Ther 2: 31.
Cattin, A. L., J. J. Burden, L. Van Emmenis, F. E. Mackenzie, J. J. Hoving, N. Garcia Calavia, Y. Guo, M. McLaughlin, L. H. Rosenberg, V. Quereda, D. Jamecna, I. Napoli, S. Parrinello, T. Enver, C. Ruhrberg and A. C. Lloyd (2015). "Macrophage-induced blood vessels guide schwann cell-mediated regeneration of peripheral nerves." Cell 162(5): 1127-1139.
Chang, C. J. (2009). "Effects of nerve growth factor from genipin-crosslinked gelatin in polycaprolactone conduit on peripheral nerve regeneration--in vitro and in vivo." J Biomed Mater Res A 91(2): 586-596.
Chen, Z. L., W. M. Yu and S. Strickland (2007). "Peripheral regeneration." Annu Rev Neurosci 30: 209-233.
Chuang, J. I., J. Y. Huang, S. J. Tsai, H. S. Sun, S. H. Yang, P. C. Chuang, B. M. Huang and C. H. Ching (2015). "FGF9-induced changes in cellular redox status and HO-1 upregulation are FGFR-dependent and proceed through both ERK and Akt to induce CREB and Nrf2 activation." Free Radic Biol Med 89: 274-286.
Cohen, R. I. and K. J. Chandross (2000). "Fibroblast growth factor-9 modulates the expression of myelin related proteins and multiple fibroblast growth factor receptors in developing oligodendrocytes." J Neurosci Res 61(3): 273-287.
Colognato, H., C. ffrench-Constant and M. L. Feltri (2005). "Human diseases reveal novel roles for neural laminins." Trends Neurosci 28(9): 480-486.
Daly, W., L. Yao, D. Zeugolis, A. Windebank and A. Pandit (2012). "A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery." J R Soc Interface 9(67): 202-221.
de Wert, G. and C. Mummery (2003). "Human embryonic stem cells: research, ethics and policy." Hum Reprod 18(4): 672-682.
Dubrovska, A., S. Kim, R. J. Salamone, J. R. Walker, S. M. Maira, C. Garcia-Echeverria, P. G. Schultz and V. A. Reddy (2009). "The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations." Proc Natl Acad Sci U S A 106(1): 268-273.
Farmer, S. R. (2006). "Transcriptional control of adipocyte formation." Cell Metab 4(4): 263-273.
Ford-Perriss, M., H. Abud and M. Murphy (2001). "Fibroblast growth factors in the developing central nervous system." Clin Exp Pharmacol Physiol 28(7): 493-503.
Fortin, D., E. Rom, H. Sun, A. Yayon and R. Bansal (2005). "Distinct fibroblast growth factor (FGF)/FGF receptor signaling pairs initiate diverse cellular responses in the oligodendrocyte lineage." J Neurosci 25(32): 7470-7479.
Frisch, S. M. and R. A. Screaton (2001). "Anoikis mechanisms." Current Opinion in Cell Biology 13(5): 555-562.
Gardiner, N. J., P. Fernyhough, D. R. Tomlinson, U. Mayer, H. von der Mark and C. H. Streuli (2005). "Alpha7 integrin mediates neurite outgrowth of distinct populations of adult sensory neurons." Mol Cell Neurosci 28(2): 229-240.
Gaudet, A. D., P. G. Popovich and M. S. Ramer (2011). "Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury." J Neuroinflammation 8: 110.
Gir, P., G. Oni, S. A. Brown, A. Mojallal and R. J. Rohrich (2012). "Human adipose stem cells: current clinical applications." Plast Reconstr Surg 129(6): 1277-1290.
Griffin, J. W., M. V. Hogan, A. B. Chhabra and D. N. Deal (2013). "Peripheral nerve repair and reconstruction." J Bone Joint Surg Am 95(23): 2144-2151.
Griffin, J. W. and W. J. Thompson (2008). "Biology and pathology of nonmyelinating Schwann cells." Glia 56(14): 1518-1531.
Grinsell, D. and C. P. Keating (2014). "Peripheral nerve reconstruction after injury: a review of clinical and experimental therapies." Biomed Res Int 2014: 698256.
Gu, Y., C. Xue, J. Zhu, H. Sun, F. Ding, Z. Cao and X. Gu (2014). "Basic fibroblast growth factor (bFGF) facilitates differentiation of adult dorsal root ganglia-derived neural stem cells toward Schwann cells by binding to FGFR-1 through MAPK/ERK activation." J Mol Neurosci 52(4): 538-551.
Guertin, A. D., D. P. Zhang, K. S. Mak, J. A. Alberta and H. A. Kim (2005). "Microanatomy of axon/glial signaling during Wallerian degeneration." J Neurosci 25(13): 3478-3487.
Haastert-Talini, K., J. Schaper-Rinkel, R. Schmitte, R. Bastian, M. Muhlenhoff, D. Schwarzer, G. Draeger, Y. Su, T. Scheper, R. Gerardy-Schahn and C. Grothe (2010). "In vivo evaluation of polysialic acid as part of tissue-engineered nerve transplants." Tissue Eng Part A 16(10): 3085-3098.
Han, F., D. Baremberg, J. Gao, J. Duan, X. Lu, N. Zhang and Q. Chen (2015). "Development of stem cell-based therapy for Parkinson's disease." Transl Neurodegener 4: 16.
Hecht, D., N. Zimmerman, M. Bedford, A. Avivi and A. Yayon (1995). "Identification of fibroblast growth factor 9 (FGF9) as a high affinity, heparin dependent ligand for FGF receptors 3 and 2 but not for FGF receptors 1 and 4." Growth Factors 12(3): 223-233.
Hoke, A. (2011). "A (heat) shock to the system promotes peripheral nerve regeneration." J Clin Invest 121(11): 4231-4234.
Hsueh, Y. Y., Y. J. Chang, T. C. Huang, S. C. Fan, D. H. Wang, J. J. Chen, C. C. Wu and S. C. Lin (2014). "Functional recoveries of sciatic nerve regeneration by combining chitosan-coated conduit and neurosphere cells induced from adipose-derived stem cells." Biomaterials 35(7): 2234-2244.
Hsueh, Y. Y., Y. L. Chiang, C. C. Wu and S. C. Lin (2012). "Spheroid formation and neural induction in human adipose-derived stem cells on a chitosan-coated surface." Cells Tissues Organs 196(2): 117-128.
Huang, C., A. Melerzanov and Y. Du (2016). "Engineering embryonic stem cell microenvironments for tailored cellular differentiation." Journal of Nanotechnology in Engineering and Medicine 6(4): 040801.
Huang, S. Q., C. L. Tang, S. Q. Sun, C. Yang, J. Xu, K. J. Wang, W. T. Lu, J. Huang, F. Zhuo, G. P. Qiu, X. Y. Wu and W. Qi (2014). "Demyelination initiated by oligodendrocyte apoptosis through enhancing endoplasmic reticulum-mitochondria interactions and Id2 expression after compressed spinal cord injury in rats." CNS Neurosci Ther 20(1): 20-31.
Kang, S. K., L. A. Putnam, J. Ylostalo, I. R. Popescu, J. Dufour, A. Belousov and B. A. Bunnell (2004). "Neurogenesis of rhesus adipose stromal cells." J Cell Sci 117(Pt 18): 4289-4299.
Kinkl, N., J. Ruiz, E. Vecino, M. Frasson, J. Sahel and D. Hicks (2003). "Possible involvement of a fibroblast growth factor 9 (FGF9)-FGF receptor-3-mediated pathway in adult pig retinal ganglion cell survival in vitro." Mol Cell Neurosci 23(1): 39-53.
Kobayashi, H., J. M. Butler, R. O'Donnell, M. Kobayashi, B. S. Ding, B. Bonner, V. K. Chiu, D. J. Nolan, K. Shido, L. Benjamin and S. Rafii (2010). "Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells." Nat Cell Biol 12(11): 1046-1056.
Komiyama, S., C. Sakakura, Y. Murayama, S. Komatsu, A. Shiozaki, Y. Kuriu, H. Ikoma, M. Nakanishi, D. Ichikawa, H. Hujiwara, K. Okamoto, T. Ochiai, A. Nakada, T. Nakamura and E. Otsuji (2013). "Adipose-derived stem cells enhance tissue regeneration of gastrotomy closure." J Surg Res 185(2): 945-952.
Kornblum, H. I. (2007). "Introduction to neural stem cells." Stroke 38(2 Suppl): 810-816.
Krejci, P., J. Prochazkova, V. Bryja, A. Kozubik and W. R. Wilcox (2009). "Molecular pathology of the fibroblast growth factor family." Hum Mutat 30(9): 1245-1255.
Kwon, Y. W., H. M. Yang and H. J. Cho (2010). "Cell therapy for myocardial infarction." Int J Stem Cells 3(1): 8-15.
Lai, M. S., Y. S. Cheng, P. R. Chen, S. J. Tsai and B. M. Huang (2014). "Fibroblast growth factor 9 activates akt and MAPK pathways to stimulate steroidogenesis in mouse leydig cells." PLoS One 9(3): e90243.
Lam, H. J., S. Patel, A. Wang, J. Chu and S. Li (2010). "In vitro regulation of neural differentiation and axon growth by growth factors and bioactive nanofibers." Tissue Eng Part A 16(8): 2641-2648.
Lin, Y., L. Chen, C. Lin, Y. Luo, R. Y. Tsai and F. Wang (2009). "Neuron-derived FGF9 is essential for scaffold formation of Bergmann radial fibers and migration of granule neurons in the cerebellum." Dev Biol 329(1): 44-54.
Lu, J., J. Dai, X. Wang, M. Zhang, P. Zhang, H. Sun, X. Zhang, H. Yu, W. Zhang, L. Zhang, X. Jiang and S. G. Shen (2015). "Effect of fibroblast growth factor 9 on the osteogenic differentiation of bone marrow stromal stem cells and dental pulp stem cells." Mol Med Rep 11(3): 1661-1668.
Lum, M., A. Turbic, B. Mitrovic and A. M. Turnley (2009). "Fibroblast growth factor-9 inhibits astrocyte differentiation of adult mouse neural progenitor cells." J Neurosci Res 87(10): 2201-2210.
Ma, F., Z. Xiao, B. Chen, X. Hou, J. Dai and R. Xu (2014). "Linear ordered collagen scaffolds loaded with collagen-binding basic fibroblast growth factor facilitate recovery of sciatic nerve injury in rats." Tissue Eng Part A 20(7-8): 1253-1262.
Mahanthappa, N. K., E. S. Anton and W. D. Matthew (1996). "Glial growth factor 2, a soluble neuregulin, directly increases Schwann cell motility and indirectly promotes neurite outgrowth." J Neurosci 16(15): 4673-4683.
Marta C. Guadamillas, A. C. a. M. A. d. P. (2011). "Overcoming anoikis – pathways to anchorage-independent growth in cancer."
Miron, V. E., T. Kuhlmann and J. P. Antel (2011). "Cells of the oligodendroglial lineage, myelination, and remyelination." Biochim Biophys Acta 1812(2): 184-193.
Miyake, A., Y. Hattori, M. Ohta and N. Itoh (1996). "Rat oligodendrocytes and astrocytes preferentially express fibroblast growth factor receptor-2 and -3 mRNAs." J Neurosci Res 45(5): 534-541.
Mohammadi, R., M. Masoumi-Verki, S. Ahsan, A. Khaleghjoo and K. Amini (2013). "Improvement of peripheral nerve defects using a silicone conduit filled with hepatocyte growth factor." Oral Surg Oral Med Oral Pathol Oral Radiol 116(6): 673-679.
Naruo, K., C. Seko, K. Kuroshima, E. Matsutani, R. Sasada, T. Kondo and T. Kurokawa (1993). "Novel secretory heparin-binding factors from human glioma-cells (glia-activating factors) involved in glial-cell growth - purification and biological properties." Journal of Biological Chemistry 268(4): 2857-2864.
Niknejad, H., H. Peirovi, A. Ahmadiani, J. Ghanavi and M. Jorjani (2010). "Differentiation factors that influence neuronal markers expression in vitro from human amniotic epithelial cells." European Cells & Materials 19: 22-29.
Nodari, A., S. C. Previtali, G. Dati, S. Occhi, F. A. Court, C. Colombelli, D. Zambroni, G. Dina, U. Del Carro, K. P. Campbell, A. Quattrini, L. Wrabetz and M. L. Feltri (2008). "Alpha6beta4 integrin and dystroglycan cooperate to stabilize the myelin sheath." J Neurosci 28(26): 6714-6719.
Patton, B. L., J. H. Miner, A. Y. Chiu and J. R. Sanes (1997). "Distribution and function of laminins in the neuromuscular system of developing, adult, and mutant mice." J Cell Biol 139(6): 1507-1521.
Razavi, S., M. R. Razavi, M. Kheirollahi-Kouhestani, M. Mardani and F. S. Mostafavi (2013). "Co-culture with neurotrophic factor secreting cells induced from adipose-derived stem cells: promotes neurogenic differentiation." Biochem Biophys Res Commun 440(3): 381-387.
Roloff, F., S. Strauss, P. M. Vogt, G. Bicker and C. Radtke (2014). "Spider silk as guiding biomaterial for human model neurons." Biomed Res Int 2014: 906819.
Rybak, A. P., L. He, A. Kapoor, J. C. Cutz and D. Tang (2011). "Characterization of sphere-propagating cells with stem-like properties from DU145 prostate cancer cells." Biochim Biophys Acta 1813(5): 683-694.
Satoshi Nakamuraa, b., Tomoki Todoc, Seiichi Hagaa, Takako Aizawaa, Yumiko Motoia, and T. K. Akira Uekib, Kazuhiko Ikedaa (1997). "Motor neurons in human and rat spinal cord synthesize fibroblast growth factor-9."
Scheafer, R. and M. Ubinger (2013). "Nerve guidance conduits developed from silk fibroin for peripheral nerve regenration."
Schwartz, S. D., C. D. Regillo, B. L. Lam, D. Eliott, P. J. Rosenfeld, N. Z. Gregori, J. P. Hubschman, J. L. Davis, G. Heilwell, M. Spirn, J. Maguire, R. Gay, J. Bateman, R. M. Ostrick, D. Morris, M. Vincent, E. Anglade, L. V. Del Priore and R. Lanza (2015). "Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies." Lancet 385(9967): 509-516.
Song, J. and J. M. Slack (1996). "XFGF-9: a new fibroblast growth factor from Xenopus embryos." Dev Dyn 206(4): 427-436.
Song, M. S., L. Salmena and P. P. Pandolfi (2012). "The functions and regulation of the PTEN tumour suppressor." Nat Rev Mol Cell Biol 13(5): 283-296.
Stoll, G., J. w. Griffn, C. Y. Li and B. D. Trapp (1989). "Wallerian degeneration in the peripheral nervous system: participation of both Schwann cells and macrophages in myelin degradation."
Su, N., M. Jin and L. Chen (2014). "Role of FGF/FGFR signaling in skeletal development and homeostasis: learning from mouse models." Bone Res 2: 14003.
Takahashi, K., K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda and S. Yamanaka (2007). "Induction of pluripotent stem cells from adult human fibroblasts by defined factors." Cell 131(5): 861-872.
Tewarie, R. S. N., A. Hurtado, R. H. Bartels, A. Grotenhuis and M. Oudega (2009). "Stem cell–based therapies for spinal cord injury."
Todo, T., T. Kondo, S. Nakamura, T. Kirino, T. Kurokawa and K. Ikeda (1998). "Neuronal localization of fibroblast growth factor-9 immunoreactivity in human and rat brain." Brain Res 783(2): 179-187.
Tofaris, G. K., P. H. Patterson, K. R. Jessen and R. Mirsky (2002). "Denervated schwann cells attract macrophages by secretion of leukemia inhibitory factor (LIF) and monocyte chemoattractant protein-1 in a process regulated by interleukin-6 and LIF."
Umemori, H., M. W. Linhoff, D. M. Ornitz and J. R. Sanes (2004). "FGF22 and its close relatives are presynaptic organizing molecules in the mammalian brain." Cell 118(2): 257-270.
Vargas, M. E. and B. A. Barres (2007). "Why is Wallerian degeneration in the CNS so slow?" Annu Rev Neurosci 30: 153-179.
Wallquist, W., M. Patarroyo, S. Thams, T. Carlstedt, B. Stark, S. Cullheim and H. Hammarberg (2002). "Laminin chains in rat and human peripheral nerve: distribution and regulation during development and after axonal injury." J Comp Neurol 454(3): 284-293.
Walmsley, G. G., D. A. Atashroo, Z. N. Maan, M. S. Hu, E. R. Zielins, J. M. Tsai, D. Duscher, K. Paik, R. Tevlin, O. Marecic, D. C. Wan, G. C. Gurtner and M. T. Longaker (2015). "High-throughput screening of surface marker expression on undifferentiated and differentiated human adipose-derived stromal cells." Tissue Eng Part A 21(15-16): 2281-2291.
Wei, X., X. Yang, Z. P. Han, F. F. Qu, L. Shao and Y. F. Shi (2013). "Mesenchymal stem cells: a new trend for cell therapy." Acta Pharmacol Sin 34(6): 747-754.
Wilson, K. D. and J. C. Wu (2015). "Induced pluripotent stem cells."
Yan, Q., Y. Yin and B. Li (2012). "Use new PLGL-RGD-NGF nerve conduits for
promoting peripheral nerve regeneration."
Zhang, X., O. A. Ibrahimi, S. K. Olsen, H. Umemori, M. Mohammadi and D. M. Ornitz (2006). "Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family." J Biol Chem 281(23): 15694-15700.
Zuk, P. A., M. Zhu, P. Ashjian, D. A. De Ugarte, J. I. Huang, H. Mizuno, Z. C. Alfonso, J. K. Fraser, P. Benhaim and M. H. Hedrick (2002). "Human adipose tissue is a source of multipotent stem cells." Mol Biol Cell 13(12): 4279-4295.