簡易檢索 / 詳目顯示

研究生: 應佑君
Ying, Yu-Chun
論文名稱: 峰值電流偵測結合動態電壓控制之一次側控制無線傳能系統
A Peak Current Sensing Method Combined with the Dynamic Voltage Scaling Technique for Primary Side Control in Wireless Power Transfer System
指導教授: 郭泰豪
Kuo, Tai-Haur
鄭光偉
Cheng, Kuang-Wei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 76
中文關鍵詞: 峰值電流偵測動態電壓控制無線傳能系統
外文關鍵詞: Peak current sensing, dynamic voltage scaling, wireless power transfer system
相關次數: 點閱:100下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文實現一峰值電流偵測結合動態電壓控制之一次測控制無線傳能系統可應用於可攜式3C產品及無線傳能系統。現有無線傳能系統研究主要著重於動態負載偵測以傳遞適當功率於輸出負載及整體系統效率提升。在傳統無線傳能系統,以外加迴授電路偵測動態負載,此方法將增加系統成本與電路面積;藉由變頻控制技術雖可改變輸出功率予不同輸出負載,然此技術將降低系統效率;增加可變電感與電容雖可改善系統效率,但此技術之缺點為需要複雜的控制電路與較大的印刷電路板面積。本論文提出之峰值電流偵測技術可於一次測控制電路偵測輸出負載變動;動態電壓控制可於不同輸出負載改變輸出功率使系統具備最佳效率操作,與傳統架構相比,除能降低系統成本與電路面積,更能用較簡單之控制電路實現(包含峰值電流偵測電路、除法電路、動態電壓電路與電感式耦合器驅動電路)。此外,本論文針對無線傳能系統進行系統架構比較、最佳操作頻率分析,將改善無線傳能系統之系統效率,使其更具應用、研究及市場潛力,並易於整合於可攜式產品與醫療用品。
    本論文使用TSMC 0.25um1P5M混合訊號互補式金氧半高壓製程製作。晶片面積為1.9 x 1.635mm2,此轉換器電路輸入電壓為19V (為常用電壓器輸出電壓),輸出電壓範圍為5V,最大輸出功率為5W,操作頻率為130kHz。

    A peak current sensing method combined with the dynamic voltage scaling technique for primary side control in a wireless power transfer system is proposed, which can be applied to portable 3C products and wireless charger. In recent years, the main issues for wireless power transfer systems are: detection of load transient for sufficient output power transfer and system efficiency improvement. In conventional wireless power transfer systems, an additional feedback circuit is utilized to detect the load transient, this technique results in higher cost. The variable frequency control method is proposed to change the output power when load transient, however, this technique leads to poor system efficiency. Impedance matching technique is proposed for system efficiency improving, the disadvantage of this approach is that the additional inductors and capacitors cost large PCB area. In this thesis, the peak current sensing method combined with the dynamic voltage scaling technique is proposed for detection of load transient and sufficient output power transfer. Compared to conventional wireless power transfer system, the proposed method result in lower system cost and PCB area; the system can be implemented with easier control circuit including a peak current sensor, a division circuit, a dynamic voltage scaling circuit and a driver for inductive coupler. Moreover, topologies comparisons, optimized operating frequency and sensing methods for load transients are analyzed for improving system efficiency, so that the system provides a potential in application, research and marketing and can be easily integrated in portable devices and biomedical instruments.
    This chip will be fabricated with the TSMC 0.25um CMOS high voltage mixed signal general purpose IIA based BCD 1P5M 5V/40V process. The total chip area is 1.9 x 1.635 mm2, the input and output voltages are 19V and 5V, respectively, and the operating frequency is 130 kHz.

    1 Introduction 1 2 Fundamentals of WPT System 4 2.1 Typical Architecture of WPT System 4 2.1.1 Input Source 4 2.1.2 Transmitter 5 2.1.3 Coupler 6 2.1.3.1 Inductive Coupler 7 2.1.3.2 Capacitive Coupler 8 2.1.3.3 Resonant Coupler 9 2.1.4 Receiver 10 2.1.5 Regulator 11 2.1.6 Load 12 2.2 Specification of WPT System 12 2.2.1 Quality Factor 12 2.2.2 Coupling Factor 13 2.2.3 Coupling Efficiency 15 2.2.4 System Efficiency 17 3 System Design of WPT System 18 3.1 Proposed Inductive WPT System 19 3.1.1 Equivalent Circuit Model of Inductive Coupler 20 3.1.2 Basic Calculation of LCR Circuit 22 3.2 Topology Design of Inductive Coupler 23 3.2.1 Topology Comparison 23 3.2.1.1 Series-Series Resonator 27 3.2.1.2 Series-Parallel Resonator 28 3.2.1.3 Series-Connected Resonator 29 3.2.2 Analysis of Operating Frequency 34 3.2.3 Design of Component Parameters 38 3.3 Proposed Peak-current Sensing Method Combined with Dynamic Voltage Scaling Technique 39 3.3.1 Secondary Side Load Detection 39 3.3.2 DVS Technique with Linear Load 44 3.3.3 DVS Technique with Non-linear Load 46 3.3.4 Proposed DVS Circuit 48 3.3.4.1 Small Signal Model of Voltage Mode Buck Converter 49 3.3.4.2 Compensating Strategy 50 4 Circuit Design of WPT System 53 4.1 Peak Current Sensor 54 4.2 PWM Driver 58 4.2.1 HS_Drive 59 4.2.2 HTL 62 4.3 Current Protection Circuit 63 4.4 Dynamic Voltage Scaling Circuit 65 5 Layout and Measurement Setup 69 5.1 IC Layout 69 5.2 Application Circuit 70 5.3 Verification Results 72 6 Conclusions and Future Works 74 References 75

    [1] QI standards, Version 1.0.3, Sept. 2011
    [2] P. Si, A.P. Hu, S. Malpas, and David Budgett, “A
    Frequency Control Method for Regulating Wireless Power
    to Implantable Devices,” IEEE Trans. Biomed. Circuits
    Syst., vol. 2, No. 1, March 2008
    [3] G. Wang, W. Liu, M. Sivaprakasam, and G.A.
    Kendir, “Design and Analysis of an Adaptive
    Transcutaneous Power Telemetry for Biomedical
    Implants,” IEEE Trans. Circuits Syst. I, Reg. Papers,
    vol. 42, No. 10, Oct. 2005.
    [4] T.C. Beh, M. Kato, T. Imura, S. Oh, and Y.
    Hori, “Automated Impedance Matching System for Robust
    Wireless Power Transfer via Magnetic Resonance
    Coupling,” IEEE Trans. Ind. Electron., vol. 60, No. 9,
    Sept. 2013
    [5] IEC 61000-3-2, 1998: Limits for harmonic current
    emissions (equipment input current < 16 A per phase).
    [6] IEC 61000-3-3, 1994 Limitation of voltage fluctuations
    and flicker in low voltage supply system for equipment
    with rated current 16 A.
    [7] IEC 61000-3-11, 2000: Limitation of voltage changes,
    voltage fluctuations and flicker in public low-voltage
    supply systems - equipment with rated voltage current <
    75 A and subject to conditional connection.
    [8] K.I. Hwu; Y.T. Yau, “An interleaved AC-DC converter
    based on current tracking,” IEEE Trans. Ind.
    Electron., vol. 56,no. 5,pp. 1456-1463, May 2009.
    [9] R.L. Lin; H.M. Shih, “Piezoelectric transformer based
    current-source charge-pump power-factor-correction
    electronic ballast,” IEEE Trans. Power Electron., vol.
    23, no. 3, May. 2008.
    [10] A. Karalis, J.D. Joannopoulos, and M.
    Soljacic, “Efficient Wireless Non-radiative Mid-range
    Energy Transfer,” Annals of Physics, vol. 323, Issue
    1, pp 34-38, April 27th, 2007.
    [11] Vatche Vorperian, “Simplified Analysis of PWM
    Converter Using Model of PWM Switch Part I: Continuous
    Conduction Mode,” Virginia Polytechnic Institute and
    State University.
    [12] H.P. Forghani-Zadeh and G.A. Rincon-Mora, “Current
    Sensing Technique for DC-DC Converters,” Industrial
    Electronics Society, 2007. IECON 2007. 33rd Annual
    Conference of the IEEE, Nov, 2007.
    [13] H. Y. H. Lam, W.H. Ki, and Dongsheng Ma, “ Loop Gain
    Analysis and Development of High-speed High-accuracy
    Current Sensors for Switching Converters,” Circuit
    and Systems, 2004. ISCAS ’04. Proceedings of the 2004
    International Symposium on, 2004.
    [14] P. Morrow, E. Gaalaas, and O. McCarthy, “A 20-W
    Stereo Class-D Audio Output Power Stage in 0.6-um
    BCDMOS Technology.” IEEE J. Solid-State Circuits,
    vol. 39, No. 11, Nov. 2004.
    [15] K. Tomita, R. Shinoda, T. Kuroda, and H. Ishikuro, “1
    -W 3.3-16.3-V Boosting Wireless Power Transfer
    Circuits With Vector Summing Power Controller ” IEEE
    J. Solid-State Circuits, vol. 47, No. 11, Nov. 2012.

    無法下載圖示 校內:2018-07-08公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE