| 研究生: |
劉晉湧 Liu, Chin-Yung |
|---|---|
| 論文名稱: |
深海非線性波列之波前演化 Analysis for the evolution of wave front in deep-water nonlinear waves |
| 指導教授: |
黃煌煇
Hwung, Hwung-Hweng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 調變 、前導波 、波前 |
| 外文關鍵詞: | modulation, leading wave, wave front |
| 相關次數: | 點閱:85 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在大尺度之波浪水槽中觀察造波機所造出之波列,其傳遞至水槽下游時,其前方波列由初始靜水狀態發展至穩定波動形態,在靜水位與穩定段之間有一段非線性且非穩態的波動,吾人稱此波動為波列之波前(wave front)。波前現象是以振幅的調變狀態呈現,而最終形成一類似實際海面的群波現象。了解波前特性可延續探討實際海面上群波或是由靜水面而產生的風浪特性,本研究即針對試驗資料中非線性波前之演化來做探討。
本研究實驗於國立成功大學台南水工試驗所超大型斷面實驗水槽中進行(長300m,寬5m,深5.2m),針對兩種典型非線性波列之所衍生出之非線性波前演變進行分析探討,分別為給定一主頻之規則波列以及給定兩振幅而頻率存在微小差異成份波組成之雙主頻波列。由於常用的傅立葉頻譜分析只能顯現整體頻率的變化,因此本研究以同時具有頻率域以及時間域分析能力,且對雙主頻波有良好分析能力的小波分析,探討深水非線性波列所衍生的波前之演化。
分析結果證實小波分析在波前演化的區域,無論規則波或是雙主頻波列,皆能良好的展現各時間點尖峰頻率的變化。對照水位時序列與小波能譜等值圖,振幅較高的區域,其尖峰頻率高於穩定段。為更加了解波前內部波動機制,亦探討了相位速度與個別波波浪尖銳度的變化,結果證實於波前的漸變區,水位振幅高者相位速度較慢,水位振幅低者相位速度較快,對照小波能譜等值圖,可發現相位速度較慢的區域其能量分部較為集中。在波前獨立出一前導波群後,前導波群內的頻率、相位速度、最大個別波波浪尖銳度皆漸趨近一穩定值。
We observe the front wave change from the quiet water state to steady wave motion state, when the wave train which are created by wave maker are delivered to the lower reaches of water flume. There is the non-linear and unstable wave between quiet water state and steady state. We call it wave front of wave train. The phenomenon of wave front shows the wave modulation, and finally becomes The phenomenon of wave group looking like real sea level. Due to understanding the characteristic of wave front, we can continue to discuss the wave group at field ocean or the characteristic of stormy waves which is created from quiet water state. We will use the experimental data of non-linear wave front to illustrate the evolution of it on the research.
The experiments were carried out in a super wave flume whose length is 300m, and width is 5m, and height is 5.2m at Tainan Hydraulics Laboratory in National Cheng-Kung University. We analyse the development of non-linear wave front that are derived from two typical non-linear wave train. The two typical non-linear wave train are regular wave and Bichromatic waves. Because the analysis of used Fourier analysis only can show the change in whole frequency, we decide to use wavelet analysis that have analytical ability of frequency and time domain, and also have good ability to analyse Bichromatic waves. We discuss the development of wave front that are derived from deep-water non-linear wave train by using it.
From the result of the wavelet analysis, both regular wave and Bichromatic wave clearly show the change of peak frequency at any time. In wavelet spectrum, the peak frequency of high amplitude is taller than steady section. We also discuss the change of wave steepness and phase velocity.
Contrasted to wavelet spectrum, we find that the power of slow phase velocity become more concentrated. After wave front separate from leading wave, the frequency of phase velocity and the wave's steepness of the biggest wave also turn into stable value.
1. 江文山,”深水區非線性波列調變之研究”,博士論文,國立成功大學(2005)
2. 江文山、黃煌煇 “,初始均勻波列之非線性調變” 海洋工程學刊(2004),第三卷,第二期,pp 25-37。
3. 江文山、黃煌煇、張裕弦、胡凱程,”深水區初始造波形成之瞬變波前的演變”第25屆海洋工程研討會論文集(2003),pp119-126
4. 林均樺,”長波生成之實驗量測,碩士論文”,國立成功大學(2004)
5. 黃煌煇,江文山,「均勻水深之波浪調變」,第二十七屆中華民國力學會議論文集(2003)。
6. 曾勝義,”小波理論架構下之波浪參數”, 國立成功大學(2002)
7. Benjamin, TB and Feir, JE (1967). "The disintegration of wavetrains on deep water Part 1," J Fluid Mech, Vol. 27, pp 417-430.
8. Chiang, W. S., Hsiao, S. C. and Hwung, H. H. (2007), Evolution of sidebands in deep-water bichromatic wave trains., In review. Journal of Hydraulic Research.
9. Farge, M (1992). "Wavelet transform and their applications to turbulence," Annu Rew Fluid Mech, Vol. 24, pp395-457.
10. Grue, J., Clamond, D., Huseby, M., Jensen, A., (2003). Kinematics of extreme waves in deep water., Applied Ocean Research, Vol. 25, pp.355-366
11. Hatori, M and Toba, Y (1983). "Transition of mechanically generated regular waves to wind waves under the action of wind," J. Fluid Mech, Vol. 130, pp 397-409.
12. Hwung-Hweng Hwung and Wen-Son Chiang (2004), “Long time evolution of nonlinear wave trains in deep water”, Proc. of OMAE, June-21-25, 2004, Vancuver, Canada.
13. Hwung, H. H. and Chiang, W.S. Liu P.L.F. Lynett P.(2004). Side-band evolution of initially uniform deep water wave, ICCE 2004.
14. Hwung, HH and Chiang, WS (2005). "Measurement of wave modulation and breaking," Meas Sci Technol, Vol. 16, pp 1921-1928.
15. Hwung, HH, Chiang, WS and Hsiao, SC (2007). "Observations on the evolution of wave modulation," Pro R Soc Lond A, Vol. 463, No 2077, pp 85-112.
16. Hwung-Hweng Hwung and Zhi-Cheng Huang (2007) , "Local properties of wave modulation observed by wavelet analysis, " ISOP.
17. Huang, NE, Long, SR and Shen, Z (1996). "The mechanism for frequency downshift in nonlinear wave evolution," Advances in Applied Mech, Vol. 32, pp 59-117.
18. Huang, NE, Shen, Z, Long, SR, Wu, M, Shen, HH, Zheng, Q, Yen, NC, Tung, CC, and Liu, HH (1998). "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis," Pro R Soc Lond A, Vol. 454, pp 903-995.
19. Johan L. Leander, (1996) ”On the relation between the wavefront speed and the group velocity concept”, J. Acoust. Soc. Am., Vol. 100, No. 6,pp 3503-3507.
20. Lake , B.M., Yuen, H.C., Rungaldier, H. and Ferguson, W.E. (1977) “Nonlinear deep-water waves: theory and experiment. Pat 2. Evolution of a continuous train,” Journal of Fluid Mechanics, Vol.83, pp49-74.
21. Lake, BM and Yuen, HC (1978). "A new model for nonlinear wind waves. Part 1. Physical model and experimental evidence," J Fluid Mech, Vol. 88, pp 33-62.
22. Lake, BM, Yuen, HC, Rungaldier, H and Ferguson, WE (1977). "Nonlinear deep water waves: theory and experiment. Part 2. Evolution of a continuous wave train," J Fluid Mech, Vol. 83, pp 49-74.
23. Melville, WK (1982). "Instability and breaking of deep-water waves," J. Fluid Mech, Vol 115, pp 165-185.
24. Melville, WK (1983). "Wave modulation and breakdown," J. Fluid Mech, Vol. 128, pp 489-506.
25. Miles, J.W. (1962) “Transient gravity wave response to an oscillating pressure.”, J. Fluid Mech., Vol. 13, pp.145-150
26. T. Kijewski-Correa and A. Kareem(2006), "Efficacy of Hilbert and Wavelet Transforms for Time-Frequency Analysis. ", Journal of Engineering Mechanics, Vol. 132, No. 10,pp 1037-1049
27. Ramamonjiarisoa, A and Mollo-Christensen, E (1979) "Modulation characteristics of sea surface waves," J Geophys Res, Vol 84, pp 7769-7775.
28. Su, MY (1982). "Evolution of groups of gravity waves with moderate to high steepness," Phys Fluid, Vol 25, pp 2167-2174.
29. Tulin, MP and Waseda, T (1999). "Laboratory observations of wave group evolution, including breaking effects," J Fluid Mech, Vol 378,pp 197-232.
30. Westhuis, J., van Groesen, E., Huijsmans R. (2001). “Experiments and Numerics of BichromaticWave Groups”. J. Waterway Port Coastal Ocean Engng. 127(6), 334–342.