| 研究生: |
陳祥弘 Chen, Shiang-Hung |
|---|---|
| 論文名稱: |
雷射輔助電鍍法製備銅微粒之研究 The formation of micro-scale copper particles in laser assisted electroplating method |
| 指導教授: |
林震銘
Lin, Jehn-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | 雷射 、奈米粒子 、銅 、電鍍 |
| 外文關鍵詞: | Nanoparticle, Copper, Laser, Electroplating |
| 相關次數: | 點閱:50 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文之研究目的是以自行發展之雷射輔助電鍍法製備微奈米銅粒子,針對不同條件下實驗結果進行觀察比較。在實驗方面,第一部分採用自行組裝之電化學裝置配合連續式及Q-switched 雷射在不鏽鋼試片上進行生成,並使用光學金相顯微鏡及掃描式電子顯微鏡觀察其結果。第二部分針對雷射通過電解液之吸收率以及在陰極極板上所造成的溫升效應進行量測,以自製實驗裝置配合雷射能量計以及熱電偶量測雷射通過電解液之流場後所剩餘的能量以及在陰極版所造成之最高溫度。在數值分析方面使用計算流體力學軟體模擬所使用之噴流流場以及其同軸雷射,探討流場之速度及壓力等情形以及雷射所造成之溫度場。本研究中以高斯能量分布之壁面熱源進行雷射加熱效應的計算,且不考慮電解液所吸收之雷射能量,計算結果和實驗所測得的結果具有一致性。本研究證明了使用雷射輔助電鍍法不添加穩定劑的情況下生成微奈米銅粒子之可行性,所得之實驗及理論分析結果可作為後續研究之基礎。
This study investigates the micro/nano-scale copper particles generated by the laser-assisted electroplating method, and the results have been examined at various experimental conditions.
In the first part of experiment, an electrochemical jet nozzle was made to adopt with continuous-wave and Q-switched Nd:YAG laser to generate micro/nano-scale copper particles. The results were observed by optical and scanning electron microscope. In the second part, the laser energy absorbed by electrolyte and the temperature rise caused by laser radiation on the electrode had been measured.
In the numerical analysis, the flow and temperature fields of the impinging jet of the laser nozzle were simulated simultaneously by a computational fluid dynamic software. A wall heat flux of Gaussian distribution energy profile was used to calculate the flow temperature due to the laser radiation on cathode and the energy absorption in electrolyte was not considered in this study. The results show a good agreement with the experiment. The innovative technique of the proposed device has the capability of generating micro/nano-scale particles and it opens a door of the laser applications for the future.
參考文獻
[01] 郭清癸, 黃俊傑, 牟中原, “金屬奈米粒子的製造”, 物理雙月刊, 廿三卷六期, 2001.
[02] Manfred, T. R., Wolfgang, H., “Size-selective synthesis of nanosturctured transition metal clusters”, Journal of the American Chemical Society, Vol. 116, pp. 7401-7402, 1994.
[03] Junjie, Z., Aruna, S. T., Yuri, K. and Gedanken, A., “A novel method for the preparation of lead selenide-pulse sonoelectrochemical synthesis of lead selenide”, Chemistry of Material, Vol. 12, pp. 143, 2000.
[04] Von Gutfeld, R.J., Tynan, E.E., Melcher, R.L. and Blum, S.E., “Laser enhanced electroplating and maskless pattern generation”, Applied Physics Letters, Vol. 35, pp. 651, 1979.
[05] 許新村, “雷射清除法之表面波機制研究”, 國立成功大學機械工程學系碩士論文, 1993.
[06] Manfred, T. R., Wolfgang, H. and Stefan A. Q., ” Electrochemical preparation of nanostructured bimetallic clusters”, Chemistry of Material , Vol. 7, pp. 2227-2228, 1995.
[07] Motoi, K., Makoto, S., “Electrochemical reaction of Zn in water and growth of ZnO particles”, Journal of the Electrochemical Society, Vol. 144, No. 3, pp. 809-815, 1997.
[08] Allen, B., Chang, C., ”Effects of electroplating variables on composition and morphology of nickel-cobalt deposits blated through means of cyclic voltammetry”, Electrochimica Acta, Vol. 47, pp. 3447-3456, 2002.
[09] Tim, S. O., Plamen, A. and Dmitri, A. B., “Electrodeposition of gold particles on aluminum substrates containing copper”, Journal of Physical Chemistry B, Vol. 109, No. 3, pp. 1243-1250, 2005.
[10] Murray, B. J., Li, Q., Newberg, J. T., Menke, E. J., Hemminger, J. C. and Penner, R. M.,” Shape and size-selective electrochemical synthesis of dispersed silver(I) oxide colloids”, Nano Letters, Vol. 5, No. 11, pp. 2319-2324, 2005.
[11] 蕭義鴻,“以電化學方法製備鐵奈米粒子之研究” ,國立中山大學電機工程學系研究所碩士論文, 1995.
[12] 邱品翔, ”以電化學方法製作金屬奈米粒子及其應用之研究”, 南台科技大學電機工程研究所碩士論文, 1994.
[13] 白育綸, 胡啟章,“循環伏安法和脈衝法製備奈米結構之鐵族合金”中國材料學科學會2003年年會會議.
[14] 白育綸, 胡啟章,“循環伏安法電沈積純鈷和鐵鈷鎳金屬奈米球” ,中國化學工程學會2003年年會會議.
[15] Liu, Y. C., Yu, C. C.,” New pathway for the controllable synthesis of gold nanoparticles on platinum substrates and their derivatives of polypyrrole/gold nanocomposites”, Journal of Electroanalytical Chemistry, Vol. 585, No. 2, pp. 206-213, 2005.
[16] Liu, Y. C., Lin, L. H. and Chiu, W. H., “Size-controlled synthesis of gold nanoparticles from bulk gold substrates by sonoelectrochemical methods”, Journal of Physical Chemistry B, Vol. 108, No. 50, pp. 19237-19240, 2004.
[17] Liu, S., Huang, W., Chen, S., Avivi, S. and Gedanken, A.,” Synthesis of X-ray amorphous silver nanoparticles by the pulse sonoelectrochemical method “, Journal of Non-Crystalline Solids, Vol. 283, No. 1-3, pp. 231-236, 2001.
[18] Socol, Y., Abramson, O., Gedanken, A. Meshorer, Y., Berenstein, L. and Zaban, A., “ Suspensive electrode formation in pulsed sonoelectrochemical synthesis of silver nanoparticles”, Langmuir, Vol. 18, No. 12, pp. 4736-4740, 2002.
[19] Liu, Y. C., Lin, L. H., “ New pathway for the synthesis of ultrafine silver nanoparticles from bulk silver substrates in aqueous solutions by sonoelectrochemical methods”, Electrochemistry Communications, Vol. 6, No. 11, pp. 1163-1168, 2004.
[20] Chen, J., Yao S.,” Synthesis and characterization of silver nanoparticles by sonoelectrodeposition” , Rare Metals, Vol. 24, No. 4, pp. 376-380, 2005.
[21] Haas, I., Shanmugam, S. and Gedanken, A. “Pulsed sonoelectrochemical synthesis of size-controlled copper nanoparticles stabilized by poly(N-vinylpyrrolidone)”, Journal of Physical Chemistry B, Vol. 110, No. 34, pp. 16947-16952, 2006.
[22] Lei, H., Tang, Y. J., Wei, J. J., Li, J., Li, X. B. and Shi, H. L., “Synthesis of tungsten nanoparticles by sonoelectrochemistry“, Ultrasonics Sonochemistry, Vol. 14, No. 1, pp. 81-83, 2007.
[23] Qiu, X. F., Xu, J. Z., Zhu, J. M., Zhu, J. J, Xu, S. and Chen, H. Y., “Controllable synthesis of palladium nanoparticles via a simple sonoelectrochemical method”, Journal of Materials Research, Vol. 18, No. 6 , pp. 1399-1404, 2003.
[24] Puippe, J. C., Acosta, R. E., Von Gutfeld, R. J.,” Investigation of laser-enhanced electroplating mechanisms.”, Journal of the Electrochemical Society, Vol. 128, No. 12, pp. 2539, 1981.
[25] Von Gutfeld, R. J., Acosta, R. E., Romankiw, L. T., “Laser-enhanced plating and etching:mechanisms and applications”, IBM Journal of Research and Development, Vol. 26, pp. 136., 1982.
[26] Von Gutfeld, R. J., Romankiw, L. T., Gelchinski, M. H. and Vigliotti, D. R., ”Laser enhanced jet plating: a method of high-speed maskless patterning” Applied Physics Letters, Vol. 43, pp. 876, 1983.
[27] Von Gutfeld, R. J, “Laser-enhanced patterning using photothermal effects : maskless plating and etching” Journal of the Optical Society of America B, Vol. 4, pp. 272, 1987.
[28] Datta, M. , Romankiw, L. T., Vigliotti, D. R., Von Gutfeld, R. J., ” Jet and laser-jet electrochemical micromachining of nickel and steel.” , Journal of the Electrochemical Society, Vol 136, No.8, pp. 2251, 1989.
[29] Bindra, P., Arbach, G. V. and Stimming, U., ”On the mechanism of laser enhanced plating of copper”, Journal of the Electrochemical Society, Vol. 134, No. 11, pp.2893, 1987.
[30] Gu, Z. H., Fahidy, T. Z., ”Laser-induced spot deposition of copper on ITO substrates via pulsed-potential electrolysis”, Journal of the Electrochemical Society, Vol. 150, No. 1, pp. C24-C27, 2003.
[31] Wee, L. M., Li, L., “Multiple-layer laser direct writing metal deposition in electrolyte solution”, Applied Surface Science, Vol. 247, pp.285, 2005.
[32] Pajak, P. T., De Silva, A. K. M., McGeough, J. A. and Harrison, D. K., ”Modeling the aspects of precision and efficiency in laser-assisted jet electrochemical machining (LAJECM)”, Journal of Materials Processing Technology, Vol. 149, No. 1-3, pp. 512-518, 2004.
[33] Pajak, P. T., De Silva, A. K. M., Harrison, D. K. and McGeough, J. A., “Precision and efficiency of laser assisted jet electrochemical machining”, Precision Engineering, Vol. 30, No. 3, pp. 288-298, 2006.
[34] 吳浩青, 李永舫, ”電化學動力學”, 科技圖書股份有限公司, 2001.
[35] Geoffery, P., “Electrochemical engineering principles”, Prentice Hall, 1991.
[36] Paul, D., ”Double layer and electrode kinetics”, Interscience publisher, 1966.
[37] 田福助, ”電化學:理論與應用”, 高立圖書公司, 1987.
[38] Bortels, L., Deconinck, J. and Van Den Bossche, B.” Multi-dimensional upwinding method as a new simulation tool for the analysis of multi-ion electrolytes controlled by diffusion, convection and migration. Part 1. Steady state analysis of a parallel plane flow channel”, Journal of Electroanalytical Chemistry, Vol 404 ,pp. 15-26, 1996.
[39] Van Den Bossche, B., Bortels, L., Deconinck, J., Vandeputte, S. and Hubin, A., ”Numerical steady state analysis of current density distributions in axisymmetrical systems for multi-ion electrolytes : application to the rotating disc electrode”, Journal of Electroanalytical Chemistry ,441 pp. 129-143, 1996.
[40] Bortels, L., Van Den Bossche, B. and Deconinck, J., “Analytical solution for the steady-state diffusion and migration. Application to the identification of Butler-Volmer electrode reaction parameters”, Journal of Electroanalytical Chemistry, Vol. 422, pp. 161-167, 1997.
[41] Arvi, K., ”Underwater and water-assisted laser processing: Part 1 - General features, steam cleaning and shock processing”, Optics and Lasers in Engineering, Vol. 41, No. 2, pp. 307-327, 2004
[42] Rubahn, H. G.,” Laser applications in surface science and technology”, Wiley, 1996.
[43] 丁勝懋, “雷射工程導論” ,中央圖書出版社, 1993.
[44] Queheillalt, D. T., Lu Y.and Wadley,. N. G. ,” Laser ultrasonic studies of solid–liquid interfaces” , The Journal of the Acoustical Society of America ,Vol. 101, Iss. 2, pp. 843-853, 1997.
[45] Storkely, U., Vodopyanovz, K. L. and Grillx, W., “GHz ultrasound wave packets in water generated by an Er laser”, Journal of Physics D: Applied Physics, Vol. 31, No. 18, , pp. 2258-2263, 1998.
[46] Dewhurst, R. J., Hutchins, D. A., Palmer, S. B. and Scruby, C. B., “Quantitative measurements of laser-generated acoustic waveforms”, Journal of Applied Physics, Vol. 53, Iss. 6, pp. 4064-4071, 1982.
[47] Laevers, P., Hubin, A., Terryn, H. and Vereecken, J.,”A wall-jet electrode reactor and its application to the study of electrode reaction mechanisms Part I : design and construction” Journal of applied electrochemistry, Vol. 25, pp. 1017-1022, 1995.
[48] Ishii, M., Hibiki, T., “Thermo-fluid dynamics of two-phase flow”, Springer Science Business Media, 2006.
[49] Soo, S. L., “Comparisons of formulations of multiphase flow”, Powder Technology, Vol. 66, pp. 1-7, 1991.
[50] FLUENT 6.2 User Guide, Fluent Inc, 2003.
[51] Cor, J. J. and Miller, T. F., “Modeling multiphase flows subjected to centrifugal acceleration with a mixture-averaged drift-flux algorithm”, Numerical Heat Transfer, Part B: Fundamentals, Vol. 47, No. 4, p 303-319, 2005.
[52] Albert Y. T., ”A numerical study on the hydrodynamics and heat transfer of a circular liquid jet impinging onto a substrate” Numerical Heat Transfer; Part A: Applications, Vol. 44, No. 1, pp. 1-19, 2003.
[53] Fujimoto, H., Hatta, N. and Viskanta, R. “Numerical simulation of convective heat transfer to a radial free surface jet impinging on a hot solid”, Heat and Mass Transfer, Vol. 35, No. 4, pp. 266-272, 1999.