簡易檢索 / 詳目顯示

研究生: 郭德明
Kuo, Der-Ming
論文名稱: 高效率具垂直結構與金屬基板之氮化鎵與磷化鋁鎵銦系列發光二極體之研製
Fabrication of High Performance Vertical-Structure Metallic-Substrate GaN- and AlGaInP-based Light Emitting Diodes
指導教授: 王水進
Wang, Shui-Jinn
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 136
中文關鍵詞: 發光二極體雷射剝離技術發光萃取效率表面粗化奈米管奈米小球透明導電層
外文關鍵詞: LED, Laser-lift Off, Light-output Power, Surface Rougheness, Nanotube, Nanosphere, TCL
相關次數: 點閱:98下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在針對利用雷射剝離與電鍍鎳金屬基板技術所製作之氮化鎵系列垂直結構發光二極體(GaN-VLEDs)以及磷化鋁鎵銦系列發光二極體(AlGaInP-LEDs)進行光輸出功率與發光效率之改善。針對GaN-VLEDs與傳統水平藍寶石基板發光二極體(Regular LEDs)結構,GaN-VLEDs因導電基板較厚且較易電流擴散之n-GaN在結構上方之故,擁有散熱佳、短電流傳導路徑、較少的電流擁擠效應(Current crowding effect)與單電極而發光面積大等優點。然而,為要早日達到VLEDs可應用於一般照明,VLEDs仍需持續改善增進其光析出效率。而以四元AlGaInP元件而言,由於磊晶技術的突飛猛進,使得紅光元件內部量子效率已達90%以上,但是因為其GaAs為吸光基板,而且散熱不佳,若要應用在大面積、高功率、高效率的照明上,恐會有所限制。面對以上的問題與挑戰,本論文提出了改善GaN-VLEDs與AlGaInP-LEDs的發光效率之新穎製程。
    首先,為能更加改善本實驗室先前所製備之VLEDs光析出效率,本研究提出一種利用聚苯乙烯奈米小球形成之光罩搭配乾式蝕刻與濺鍍沉積製程,製備出GaN奈米柱與銦鋅氧化物(Indium Zinc Oxide, IZO)奈米井陣列以提昇VLEDs光析出之方法。相較於表面只有KOH粗化之VLEDs,此方法製備之VLEDs光輸出功率與順向電壓分別在操作電流350 mA下增加97.5%與降低0.14伏特。
    其次,為了能夠於n-GaN表面上均勻並大面積的製作出奈米結構,本團隊發表了利用水熱法(HTG)成長氧化鋅奈米線(ZnO-NWs)當作暫時性模板,製備出高透明度的二氧化矽奈米管陣列(SiO2-NT arrays)。本方法具有價格低廉、大面積製作、無需觸媒、製程溫度低等優勢。並且能夠利用ZnO-NWs直徑與長度鍍着薄膜厚度進行SiO2-NT的長度與內外部管徑寬度之調變。於n-GaN表面上製備具有3 μm長度之SiO2-NT arrays VLEDs結構,相較於表面只有KOH粗化之VLEDs,此方法製備之VLEDs光輸出功率在操作電流350 mA下增加60.4%。
    再者,本研究亦於GaN-VLEDs表面製備IZO透明導電膜搭配二氧化矽奈米管陣列結構。一方面IZO作為n-GaN表面之電流擴展層,期使表面經KOH粗化之VLEDs具有更好的電流擴散;另一方面IZO透明導電膜與二氧化矽奈米管其折射係數(nIZO=2.1, nSiO2=1.5)介於n-GaN與空氣之間,可以有效地增加了光子析出角度,對元件之光輸出功率之改善有極大助益。相較於傳統表面僅使用KOH濕蝕刻粗化之VLEDs,此結合IZO透明導電膜與SiO2-NT陣列之VLEDs於操作電流350 mA注入下,光輸出效率增加103%,且順向電壓亦降低0.2 V。
    最後,本研究提出具備高反射層與電鍍鎳基板以及撘配化學濕蝕刻置換GaAs基板,且於n+-GaAs layer上濺鍍透明導電膜IZO作為電流擴散層,製備高亮度金屬基板結構AlGaInP-LEDs,以解決傳統四元LED包括元件散熱不良、低光通量與發光不均等諸多方面的問題,期望可對新世代LED光源之開發提供助益。

    In this study, efforts to enhance the light extraction and power conversion efficiency of vertical-structured GaN-based light-emitting diodes (VLEDs) and AlGaInP-LEDs employing nickel electroplating and laser lift-off (LLO) techniques were proposed. As compared to conventional lateral GaN-based LEDs with sapphire substrate (abbreviated as regular LEDs), GaN-VLEDs have good heat dissipation, shorter conduction path, less current crowding effect, and larger effective area through a conducting substrate and improved current spreading through the top of the n-GaN epilayer. However, the light-extraction efficiency of VLEDs must still be improved for general lighting. For the AlGaInP-LED structure, a high internal quantum efficiency of around 90% has been achieved for AlGaInP LEDs due to the rapid development of epitaxy technique. However, the absorbing and poor thermal conducting of conventional GaAs substrate have hindered the further application for large area, high power, and high-efficiency illumination. As a result, the thesis presents the novel fabrications to improve the light extraction efficiency of both GaN-VLEDs and AlGaInP-LEDs.
    First, we aimed to further improve the light-extraction efficiency of regular VLEDs beyond previous work. Through the use of annealed-Pt/Al/Pt as a high reflectivity p-ohmic/mirror layer and polystyrene (PS) nano-spheres as a 2-D mask for producing a n-GaN surface and the patterned-deposition of indium-zinc-oxide (IZO), GaN-VLEDs with atop periodic nano-structure (VLED-A) were fabricated. At 350 mA, VLED-A exhibited a crucial VF reduction of 0.14 V with an enhancement of 97% in light output power (Lop) as compared to regular-VLED with KOH treatment.
    Second, through a deposition of thin SiO2 film to sheathe the hydrothermally grown (HTG) ZnO nanowires arrays (ZnO-NW arrays), the high transparent SiO2 nanotube arrays (SiO2-NT arrays) with controllable inner/outer diameter and length were fabricated. The prepared SiO2-NT arrays with average inner/outer diameters and length of around 200/300 nm and 1.5 μm, respectively, exhibited a superior transmittance of 95% in visible light spectrum. In addition, surface roughness using SiO2-NT arrays on vertical-structure GaN-LEDs (VLEDs) showed an additional improvement in the light output of about 60.4% at 350 mA as compared to those of regular VLEDs with KOH treatment, suggesting the effectiveness and promising applications of the proposed SiO2-NT arrays in optics and optoelectronics devices.
    Furthermore, the use of IZO transparent conduction layer (TCL) and SiO2 nanotube (SiO2-NT) arrays graded-refractive-index integrated structure to improve light extraction of vertical structure KOH-etched GaN-based light emitting diodes (VLEDs) is demonstrated. Compared with VLEDs without the proposed scheme, the proposed VLEDs show considerable gains in light emitted critical angle and light output power (Lop) by 21.2° and 103% at 350 mA, respectively.
    Finally, employed IZO-TCL for metal substrate AlGaInP-LEDs was investigated with regard to both fabrication and effectiveness in improving light extraction efficiency. After the removal of the GaAs substrate, a metal system consisting of AuGe/Au was deposited to form ohmic contact dots for n+-GaAs and then IZO film was deposited to serve as a TCL. Compared to conventional LEDs with GaAs substrate, the proposed LEDs show an increase in light output power (i.e., ΔLop/Lop) by 116.7% at 20 mA and 168.9% at 100 mA.

    Abstract (in Chinese) I Abstract (in English) III Acknowledgments VI Contents VII Table Captions XI Figure Captions XII Chapter 1 Introduction 1-1 Recent development of GaN-based high power and brightness LEDs 1 1-2 Overviews of AlGaInP-LEDs 4 1-3 Thesis organization 5 References 7 Chapter 2 Challenges for improving light extraction efficiency of vertical-structured GaN-based and AlGaInP-based LEDs 14 2-1 Fabrication of regular vertical structure GaN-based LEDs 14 2-1.1 Issues of external quantum efficiency in GaN-VLEDs 14 2-1.2 High reflective ohmic contacts to p-GaN 17 2-1.3 Substrate engineering: wafer bonding and metal plating 18 2-1.4 Laser lift-off 23 2-1.5 Surface roughening on the n-GaN layer 25 2-2 AlGaInP-LEDs Structure Evolution and Challenge 26 2-2.1 Typical Long Wavelength AlGaInP LEDs 26 2-2.2 AlGaInP LED Performance Issues: Red Shift 27 2-2.3 Diffusion Barrier Layer 28 References 30 Chapter 3 Enhanced light output of vertical GaN-Based LEDs with highly reflective p-ohmic contact and periodic nano-structure by polystyrene spheres technology 40 3-1 Introduction 40 3-2 Device fabrication 41 3-3 Results and Discussion 44 3-3.1 P-ohmic contact characteristics 44 3-3.2 Surface morphology 44 3-3.3 AFM analysis 45 3-3.4 IZO-TCL characteristics 46 3-3.5 Electrical and optical characteristics 46 3-4 Summary 49 References 50 Chapter 4 Preparation of dimension controllable SiO2 nanotube arrays and application in vertical GaN-based light emitter diodes 65 4-1 Introduction 65 4-2 Fabrication and analysis SiO2-NT arrays 67 4-2.1 Fabrication of SiO2-NT arrays 67 4-2.2 SEM analysis 69 4-2.3 TEM and EDS analysis 69 4-2.4 Transparent properties 70 4-3 The fabrication of VLED with SiO2-NT arrays 71 4-3.1 Schematic structure of all prepared VLEDs 71 4-3.2 SEM and transparent analysis 72 4-3.3 Electrical and optical characteristics 73 4-4 Summary 75 References 76 Chapter 5 Double the Light Output of GaN-Based Vertical Light Emitting Diodes with integrated Indium Zinc Oxide Transparent Conduction Layer and SiO2 Nanotube Arrays 90 5-1 Introduction 90 5-2 Device fabrication 92 5-3 Results and Discussion 93 5-3.1 SEM analysis 93 5-3.2 Light-guiding and lighting paths properties 94 5-3.3 IZO-TCL characteristics 95 5-3.4 Optical and electrical characteristics 96 5-4 Summary 98 References 99 Chapter 6 Enhanced Light Output of AlGaInP Light Emitting Diodes Using an Indium-Zinc Oxide Transparent Conduction Layer and Electroplated Metal Substrate 111 6-1 Introduction 111 6-2 Device fabrication 112 6-3 Results and Discussion 114 6-3.1 p-ohmic contact and reflective properties 114 6-3.2 IZO-TCL and AuGe/Au contact analysis 115 6-3.3 Optical and electrical characteristics 115 6-4 Summary 117 References 118 Chapter 7 Conclusions and Future Study 127 7-1 Conclusions 127 7-2 Suggestions for Future Study 128 Publication Lists 132 Vita 136

    [1.1] Bardsley Consulting et al., “Solid-State Lighting Research and Development: Manufacturing Roadmap,” Lighting Research and Development Building Technologies Program Office of Energy Efficiency and Renewable Energy U.S. Department of Energy, Sept. 2009.
    [1.2] S. Nakamura and G. Fasol, “The Blue Laser Diode”, Springer-Verlag, Heidelberg, 1997.
    [1.3] S. Strite and H. Morkoc, “GaN, ALN, and InN: A review”, J. Vac. Sci. Technol. B vol. 10, pp. 1237-1266, July 1992.
    [1.4] E. F. Schubert, “Light-Emitting Diodes”, Cambridge University, 2003.
    [1.5] C. Humphreys, “Compound Semiconductor”, p. 14, May 2003.
    [1.6] H. W. Huang, J. T. Chu, C. C. Kao, T. H. Hseuh, T. C. Lu, H. C. Kuo, S. C. Wang, and C. C. Yu, “Enhanced light output of an InGaN/GaN light emitting diode with a nano-roughened p-GaN surface”, Nanotechnology, vol. 16, pp. 1844–1848, 2005.
    [1.7] C. H. Kuo, S. J. Chang, Y. K. Su, R. W. Chuang, C. S. Chang, L. W. Wu, W. C. Lai, J. F. Chen, J. K. Sheu, H. M. Lo, and J. M. Tsai, “Nitride-based near-ultraviolet LEDs with an ITO transparent contact”, Materials Science and Engineering B, vol. 106, pp. 69–72, 2004.
    [1.8] M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting > 50% external quantum efficiency”, Appl. Phys. Lett., vol. 75, pp. 2365-2368, Oct. 1999.
    [1.9] M. K. Kelly, O. Ambacher, B. Dahlheimer, G. Groos, R. Dimitrov, H. Angerer, and M. Stutzmann, “Optical patterning of GaN films,” Appl. Phys. Lett., vol. 69, no. 12, pp. 1749-1751, Sep. 1996.
    [1.10] W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L T. Romano, and N. M. Johnson, “Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off,” Appl. Phys. Lett., vol. 75, no. 10, pp. 1360-1362, Sep. 1999.
    [1.11] W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romano, and N. M. Johnson, “InxGa1-xN light emitting diodes on Si substrates fabricated by Pd–In metal bonding and laser lift-off,” Appl. Phys. Lett., vol. 77, no. 18, pp. 2822-2824, Oct. 2000.
    [1.12] M. Kneissl, W. S. Wong, D. W. Treat, M. Teepe, N. Miyashita, and N. M. Johnson, “CW InGaN Multiple-Quantum-Well Laser Diodes on Copper Substrates,” Phys. Status Solidi A, vol. 188, no.1, pp. 23-29, 2001.
    [1.13] S. J. Wang, K. M. Uang, S. L. Chen,Y. C. Yang, S. C. Chang, T. M. Chen, and C. H. Chen, “Use of patterned laser liftoff process and electroplating nickel layer for the fabrication of vertical-structured GaN-based light-emitting diodes,” Appl. Phys. Lett., vol. 87, p. 011111-1, 2005.
    [1.14] S. J. Wang, S. L. Chen, K. M. Uang, W. C. Lee, T. M. Chen, C. H. Chen, and B. W. Liou, “The use of transparent conducting indium-zinc oxide film as a current spreading layer for vertical-structured high power GaN-based light-emitting diodes,” IEEE Photon. Technol. Lett., vol. 18, no. 10, pp. 1146–1148, 2006.
    [1.15] T. M. Chen, S. J. Wang, K. M. Uang, H. Y. Kuo, C. C. Tsai, W. C. Lee, and H. Kuan, ”Current Spreading and Blocking Designs for Improving Light Output Power from the Vertical-Structured GaN-Based Light-Emitting Diodes,” IEEE Photon. Technol. Lett., vol. 20, no. 9, pp. 703-705, 2008.
    [1.16] T. M. Chen, S. J. Wang, K. M. Uang , S. L. Chen, W. C. Tsia, W. C. Lee, and C. C. Tsia, ”Use of Anisotropic Laser Etching to the Top n-GaN Layer to Alleviate Current Crowding Effect in Vertical-Structured GaN-Based Light-Emitting Diodes,” Appl. Phys. Lett., vol. 90, p. 041115, 2007.
    [1.17] S. J. Wang, S. L. Chen, K. M. Uang, T. M. Chen, W. C. Lee, and B. W. Liou, “Fabrication of Dicing-Free Vertical-Structured High Power GaN-Based Light- Emitting Diodes with Selective Nickel Electroplating and Patterned Laser Lift-Off Techniques,” IEEE Photon. Technol. Lett., vol. 19, no. 6, pp. 351-353, 2007.
    [1.18] H. Sugawara, M. Ishikawa, and G. Hatakoshi, ‘High efficiency InGaAlP/GaAs visible light-emitting diodes,’ Appl. Phys. Lett., vol. 58, pp. 1010-1012, 1991.
    [1.19] C. P. Kuo, R. Fletcher, T. Osentowski, M. Lardizabal, M. Craford, and V. Robbins, ‘High performance AlGaInP visible light emitting diodes,’ Appl. Phys. Lett., vol. 57, pp. 2937-2939, 1990.
    [1.20] M. Boroditsky and E. Yablonoyitch, ‘Light emitting diode extraction efficiency,’ Proc. SPIE, vol. 3002, pp. 119-122, 1997.
    [1.21] S. K. Kim, H. D. Song, H. S. Ee, H. M. Choi, H. K. Cho, Y. H. Lee, and H. G. Park, “Metal mirror assisting light extraction from patterned AlGaInP light-emitting diodes,” Appl. Phys. Lett., vol. 94, no. 10, pp. 10102, Mar. 2009.
    [1.22] W. C. Peng, and Y. S. Wu, “High-power AlGaInP light-emitting diodes with metal substrates fabricated by wafer bonding,” Appl. Phys. Lett., vol. 84, no. 11, pp. 1842-1844, Mar. 2004.
    [1.23] Y. C. Lee, C. E. Lee, H. C. Kuo, T. C. Lu, and S. C. Wang, “Enhancing the Light Extraction of (AlxGa1 x)0:5In0:5P-Based Light-Emitting Diode Fabricated via Geometric Sapphire Shaping,” IEEE Photon. Technol. Lett., vol. 20, no. 5, pp. 369-371, Mar. 2008.
    [1.24] T. Y. Tsai, Y. J. Liu, C. H. Yen, and W. C. Liu, “On an AlGaInP Multiple Quantum Well Light Emitting Diode with a Thin Carbon-Doped GaP Contact Layer Structure,” J. Electrochem. Soc., vol. 157, no. 4, pp. H459-H462, 2010.
    [1.25] S. C. Hsu, D. S. Wuu, C. Y. Lee, and R. H. Horng, “High-Efficiency 1-mm2 AlGaInP LEDs Sandwiched by ITO Omni-Directional Reflector and Current-Spreading Layer,” IEEE Photon. Technol. Lett., vol. 17, no. 7, pp. 492-494, Apr. 2007.
    [1.26] S. C. Hsu, D. S. Wuu, X. Zheng, and R. H. Horng, “Electron-Beam and Sputter-Deposited Indium–Tin Oxide Omnidirectional Reflectors for High-Power Wafer-Bonded AlGaInP Light-Emitting Diodes,” J. Electrochem. Soc., vol. 156, no. 4, pp. H281-H284, 2009.
    [1.27] L. J Yan, C. C. Y. M. L. Lee, S. J. Tu, C. S. Chang, and J. K. Sheu, “AlGaInP/GaP Heterostructures Bonded with Si Substrate to Serve as Solar Cells and Light Emitting Diodes,” J. Electrochem. Soc., vol. 157, no. 4, pp. H452-H454, Mar. 2010.
    [2.1] S. Yoshida, S. Misawa, and S. Gonda, “Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN-coated sapphire substrates,” Appl. Phys. Lett., vol. 42, pp. 427-429, Mar. 1983.
    [2.2] H. Amano, N. Sawaki, I. Akasaki, and Y. Touoda, ”Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett., vol. 48, pp. 353-355, Feb. 1986.
    [2.3] H. Amano, M. Iwaya, T. Kashima, M. Katsuragawa, I. Akasaki, J. Han, S. Hearne, J.A. Floro, E. Chason, and J. Figiel, ”Stress and Defect Control in GaN Using Low Temperature Interlayers,” Jpn. J. Appl. Phys., vol. 37, pp. L1540-L1542, 1998.
    [2.4] B. Beaumont, Ph. Vennegures, and P. Gibart, “Epitaxial Lateral Overgrowth of GaN,” Phys. Stat. Sol. (b), vol. 227, pp. 1-43, Sep. 2001.
    [2.5] R. F. Davis, T. Gehrke, K. J. Linthicum, P. Rajagopal, A. M. Roskowski, T. Zheleva, E. A. Preble, C. A. Zorman, M. Mehregany, U. Schwarz, J. Schuck, and R. Grober, ”Review of Pendeo-Epitaxial Growth and Characterization of Thin Films of GaN and AlGaN Alloys on 6H-SiC(0001) and Si(111) Substrates,“ MRS Internet Journal of Nitride Semiconductor Research, vol. 6, pp. 1-16, Nov. 2001.
    [2.6] C. I. H. Ashby, C. C. Mitchell, J. Han, N. A. Missert, P. P. Provencio, D. M. Follstaedt, G. M. Peake, and L. Griego, “Low-dislocation-density GaN from a single growth on a textured substrate,” Appl. Phys. Lett., vol. 77, pp. 3233-3235, Nov. 2000.
    [2.7] E. F. Schubert, “Light-Emitting Diodes,” Cambridge University, 2003.
    [2.8] W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romano, and N. M. Johnson, “InxGa1-xN light emitting diodes on Si substrates fabricated by Pd–In metal bonding and laser lift-off,” Appl. Phys. Lett., vol. 77, no. 18, pp. 2822-2824, Oct. 2000.
    [2.9] S. J. Wang, K. M. Uang, S. L. Chen,Y. C. Yang, S. C. Chang, T. M. Chen, and C. H. Chen, “Use of patterned laser liftoff process and electroplating nickel layer for the fabrication of vertical-structured GaN-based light-emitting diodes,” Appl. Phys. Lett., vol. 87, p. 011111-1, 2005.
    [2.10] R. H. Horng, C. C. Yang, J. Y. Wu, S. H. Huang, C. E. Lee, and D. S. Wuu, “GaN-based light-emitting diodes with indium tin oxide texturing window layers using natural lithography,” Appl. Phys. Lett., vol. 86, p. 221101-1, May 2005.
    [2.11] W. S. Wong, T. Sands, and N. W. Cheung, “Damage-free separation of GaN thin films from sapphire substrates,” Appl. Phys. Lett., vol. 72, no. 5, pp. 599-601, 1998.
    [2.12] C. L. Lin, S. J. Wang, and C. Y. Liu, “High-Thermal-Stability and Low-Resistance p-GaN Contact for Thin-GaN Light Emitting Diodes Structure,” Electrochem. Solid-State Lett., vol.8, no. 10, pp. G265-G267, 2005.
    [2.13] C. H. Chou, H. Y. Bor, C. L. Lin, Y. C. Chuang, and C. Y. Liu, “High thermally stable Ni/Ag(Al) alloy contacts on p-GaN,” Appl. Phys. Letts., vol. 90, p. 022103-1 2007.
    [2.14] H. G. Kim, P. Deb, and T. Sands,"High-Reflectivity Al-Pt Nanostructured Ohmic Contact to p-GaN," IEEE Trans. Electron Dev., vol. 53, no. 10, pp. 2448-2453, Oct. 2006.
    [2.15] J. Jasinski, Z. Liliental-Weber, S. Estrada, and E. Hu, “Microstructure of GaAs/GaN interfaces produced by direct wafer fusion,” Appl. Phys. Lett., vol. 81, pp. 3152-3154, Oct. 2002.
    [2.16] W. S. Wong, M. Kneissl, P. Mei, D. W. Treat, M. Teepe, and N. M. Johnson, “Continuous-wave InGaN multiple-quantum-well laser diodes on Cupper substrates,” Appl. Phys. Lett., vol. 78, pp. 1198-1200, Feb. 2001.
    [2.17] Z. S. Luo, Y. Cho, V. Loryuenyong, T. Sands, N. W. Cheung, and M. C. Yoo, “Enhancement of (In,Ga)N light-emitting diode performance by laser liftoff and transfer from sapphire to silicon,” IEEE Photonics Technol. Lett., vol. 14, pp. 1400-1402, Oct. 2002.
    [2.18] W. S. Wong, M. Kneissl, D. W. Treat, M. Teepe, N. Miyashita, A. Salleo, and N. M. Johnson, “Continuous-wave InGaN laser diodes on copper and diamond substrates,” J. Mater. Res., vol. 17, pp. 890-894, Apr. 2002.
    [2.19] C. F. Chu, C. C. Yu, H. C. Cheng, C. F. Lin, and S. C. Wang, “Comparison of p-Side Down and p-Side Up GaN Light-Emitting Diodes Fabricated by Laser Lift-Off ,“ Jpn. J. Appl. Phys., vol. 42, pp. L147-L150, Feb. 2003.
    [2.20] B. S. Tan, S. Yuan, and X. J. Kang, “Performance enhancement of InGaN light-emitting diodes by laser lift-off and transfer from sapphire to copper substrate,” Appl. Phys. Lett., vol. 84, pp. 2757-2759, Apr. 2004.
    [2.21] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett., vol. 84, pp. 855-857, Feb. 2004.
    [2.22] P. H. Chen, C. L. Lin, and C. Y. Liu, “Light enhancement by the formation of an Al oxide honeycomb nanostructure on the n-GaN surface of thin-GaN light-emitting diodes,” Appl. Phys. Letts., vol. 90, no. 13, p, 242106-1, 2007.
    [2.23] D. W. Kim, H. Y. Lee, M. C. Yoo, and G. Y. Yeom, “Highlt efficient vertical laser-liftoff GaN-based light-emitting diodes formed by optimization of the cathode structure,” Appl. Phys. Lett., vol. 86, p. 052108-1, Jan. 2005.
    [2.24] M. Braunovic, “Fretting in nickel-coated aluminium conductors,” Proceedings of the Thirty-Sixth IEEE Holm and the Fifteenth International Conference on Electrical Contacts, vol. 461, pp. 461-471, Aug. 1990.
    [2.25] M. K. Kelly, O. Ambacher, B. Dahlheimer, G. Groos, R. Dimitrov, H. Angerer, and M. Stutzmann, “Optical patterning of GaN films,” Appl. Phys. Lett., vol. 69, pp. 1749-1751, Sep. 1996.
    [2.26] T. Fujii, A. David, Y. Gao, M. Iza, S. P. DenBaars, E. L. Hu, C. Weisbuch, and S. Nakamura, ”Cone-shaped surface GaN-based light-emitting diodes,” Phys. Stat. Sol. C, vol. 2, pp. 2836-2840, 2005.
    [2.27] H. C. Lee, J. B. Park, J. W. Bae, P. T. T. Thuy, M. C. Yoo, and G. Y. Yeom, ”Effect of the surface texturing shapes fabricated using dry etching on the extraction efficiency of vertical light-emitting diodes,” Solid-State Electronics, vol. 52, pp. 1193-1196, 2008.
    [2.28] D. H. Kim, C. O Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, Q. H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns ,“ Appl. Phys. Lett., vol. 87, p. 203508-1, 2005.
    [2.29] C. L. Lin, P. H. Chen, C. H. Chan, C. C. Lee, C. C. Chen, J. Y. Chang and C. Y. Liu, “Light enhancement by the formation of an Al oxide honeycomb nanostructure on the n-GaN surface of thin-GaN light-emitting diode,“ Appl. Phys. Letts., vol. 90, p. 242106-1, 2007.
    [2.30] S. C. Hsu, D. S. Wuu, C. Y. Lee, and R. H. Horng, “High-Efficiency 1-mm2 AlGaInP LEDs Sandwiched by ITO Omni-Directional Reflector and Current-Spreading Layer,” IEEE Photon. Technol. Lett., vol. 17, no. 7, pp. 492-494, Apr. 2007.
    [2.31] S. C. Hsu, D. S. Wuu, X. Zheng, and R. H. Horng, “Electron-Beam and Sputter-Deposited Indium–Tin Oxide Omnidirectional Reflectors for High-Power Wafer-Bonded AlGaInP Light-Emitting Diodes,” J. Electrochem. Soc., vol. 156, no. 4, pp. H281-H284, 2009.
    [2.32] L. J Yan, C. C. Y. M. L. Lee, S. J. Tu, C. S. Chang, and J. K. Sheu, “AlGaInP/GaP Heterostructures Bonded with Si Substrate to Serve as Solar Cells and Light Emitting Diodes,” J. Electrochem. Soc., vol. 157, no. 4, pp. H452-H454, Mar. 2010.
    [2.33] S. Chhajed, Y. Xi, Th. Gessmann, J. Q. Xi, J. M. Shah, J. K. Kim, and E. F. Schubert, ‘Junction temperature in light emitting diodes assessed by different method,’ Future chip constellation, Troy, NY 12180.
    [3.1] T. Fuji, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett., vol. 84, no. 6, pp. 855-857, Feb. 2004.
    [3.2] S. J. Wang, K. M. Uang, S. L. Chen,Y. C. Yang, S. C. Chang, T. M. Chen, and C. H. Chen, “Use of patterned laser liftoff process and electroplating nickel layer for the fabrication of vertical-structured GaN-based light-emitting diodes,” Appl. Phys. Lett., vol. 87, pp. 011111-1, 2005.
    [3.3] S. J. Wang, S. L. Chen, K. M. Uang, W. C. Lee, T. M. Chen, C. H. Chen, and B. W. Liu, “The use of transparent conducting indium-zinc oxide film as a current spreading layer for vertical-structured high power GaN-based light-emitting diodes,” IEEE Photon. Technol. Lett., vol. 18, no. 10, pp. 1146-1148, May 2006.
    [3.4] D. W. Kim, H. Y. Lee, M. C. Yoo, and G. Y. Yeom, “Highly efficient vertical laser-liftoff GaN-based light-emitting diodes formed by optimization of the cathode structure,” Appl. Phys. Lett., vol. 86, pp. 052108, Jan. 2005.
    [3.5] T. S. Kim, S. M. Kim, Y. H. Jang, and G. Y. Junga, “Increase of light extraction from GaN based light emitting diodes incorporating patterned structure by colloidal lithography,” Appl. Phys. Lett., vol. 91, pp. 171114, Oct. 2007.
    [3.6] A. J. Danner, B. Wang, S-J Chua, and J-K Hwang, “Fabrication of efficient light-emitting diodes with a self-assembled photonic crystal array of polystyrene nanoparticles,” IEEE Photon. Technol. Lett., vol. 20, no. 1, pp. 48-50, Jan. 2008.
    [3.7] H. G. Kim, P. Deb, and T. Sands, “High-Reflectivity Al-Pt Nanostructured Ohmic Contact to p-GaN,” IEEE Trans. Electron. Dev., vol. 53, no. 10, pp. 2448-2453, Oct. 2006.
    [3.8] H. K. Cho, S. K. Kim, D. K. Bae, B. C. Kang, J. S. Lee, and Y. H. Lee, “Laser Liftoff GaN Thin-Film Photonic Crystal GaN-Based Light-Emitting Diodes,” IEEE Photon. Technol. Lett., vol. 20, no. 24, pp. 2096-2098, Dec. 2008.
    [3.9] C. L. Cheung, R. J. Nikolic, C. E. Reinhardt, and T. F. Wang, “Fabrication of nanopillars by nanosphere lithography,” Nanotechnology, vol. 17, pp. 1339–1343, Feb. 2006.
    [3.10] W. C. Lee, K. M. Uang, D. M. Kuo, J. C. Chou, T. M. Chen, H. Y. Kuo, and S. J. Wang, “Use of Highly Reflective Ohmic Contact and Surface KrF Laser Roughening to Improve Light Output of Vertical GaN-Based Light-Emitting Diodes,” Proceedings of the 66th Device Research Conference, University of California, Santa Barbara, California, USA, pp. 141-142, June 23-25, 2008.
    [3.11] T. Akane, K. Sugioka, K. Hammura, Y. Aoyagi, K. Midorikawa, K. Obata, K. Toyoda, and S. Nomura, “GaN ablation etching by simultaneous irradiation with F2 laser and KrF excimer laser,” J. Vac. Sci. Technol. B, vol. 19, no. 4, pp.1388-1391, 2001.
    [3.12] C. H. Kuo, S. J. Chang, Y. K. Su, R.W. Chuang, C. S. Chang, L.W.Wu, W. C. Lai, J. F. Chen, J. K. Sheu, H. M. Lo, and J. M. Tsai, “Nitridebased near-ultraviolet LED’s with an ITO transparent contact,” Mater. Sci. Eng., vol. B106, pp. 69–72, 2004.
    [3.13] R. H. Horng and C. C. Yang, “GaN-based light-emitting diodes with indium tin oxide texturing window layers using natural lithography,” Appl. Phys. Lett., vol. 86, pp. 221101, May 2005.
    [3.14] M. Minami, “Transparent and conductive multicomponent oxide films prepared by magnetron sputtering,” J. Vac. Sci. Technol., vol. A 17, no. 4, pp. 1765–1772, 1999.
    [3.15] S. N. Mohammad, “Contact mechanisms and design principles for nonalloyed ohmic contacts to n-GaN,” J. Appl. Phys., vol. 95, no. 9, pp. 4856–4865, May 2004.
    [3.16] W. N. Ng, C. H. Leung, P. T. Lai, and H. W. Choi, “Photonic crystal light-emitting diodes fabricated by microsphere lithography,” Nanotechnology, vol. 19, pp. 255302-255306, Feb. 2008.
    [4.1] Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D. P. Yu, “Optical properties of the ZnO nanotubes synthesized via vapor phase growth,” Appl. Phys. Lett., vol. 83, pp. 1689-1691, July 2003.
    [4.2] J. Yu, and M. Zhou, “Effects of calcination temperature on microstructures and photocatalytic activity of titanate nanotube films prepared by an EPD method,” Nanotechnology, vol. 19, no. 4, pp. 045606, Jan. 2008.
    [4.3] J. Hwang, B. Min, J. S. Lee, K. Keem, K. Cho, M. Y. Sung, M. S. Lee, and S. Kim, “Al2O3 Nanotubes Fabricated by Wet Etching of ZnO/Al2O3 Core/Shell Nanofibers,” Adv. Mater., vol. 16, no. 5, pp. 422-425, Mar. 2004.
    [4.4] Y. Shin, and S. Lee, “A freestanding membrane of highly ordered anodic ZrO2 nanotube arrays ,” Nanotechnology, vol. 20, no. 10, pp. 105301, Mar. 2009.
    [4.5] M. Zhang, Y. Bando, and K. Wada, “Silicon dioxide nanotubes prepared by anodic alumina as templates,” J. Mater. Res., vol. 15, pp. 387-392, no. 2, Nov. 2000..
    [4.6] C. Yu, Q. Hao, S. Saha, L. Shi, X. Kong, and Z. L. Wang, “Integration of metal oxide nanobelts with microsystems for nerve agent detection,”Appl. Phys. Lett., vol. 86, pp. 063101, Nov. 2005.
    [4.7] G. Shen, Y. Bando, and D. Golberg, “Size-Tunable Synthesis of SiO2 Nanotubes via a Simple In Situ Templatelike Process,” J. Phys. Chem., vol. B 110, pp. 23170-23174, Apr. 2006.
    [4.8] Y. L. Chueh, L. J. Chou, and Z. L. Wang, “SiO2/Ta2O5 Core–Shell Nanowires and Nanotubes,” Angew. Chem. Int. Ed., vol. 45, pp. 7773-7778, 2006.
    [4.9] H. Ogihara, S. Takenaka, I. Yamanaka, E. Tanabe, A. Genseki, and K. Otsuka, “Synthesis of SiO2 Nanotubes and Their Application as Nanoscale Reactors,” Chem. Mater., vol. 18, pp. 996-1000, Jan. 2006.
    [4.10] F. Persson, L. H. Thamdrup, M. B. LMikkelsen, S. E. Jaarlgard, P. S. Pedersen, H. Bruus, and A. Kristensen, “Double thermal oxidation scheme for the fabrication of SiO2 nanochannels,” Nanotechnology, vol. 18, pp. 245301, Apr. 2007.
    [4.11] R. Fan, Y. Wu, D. Li, M. Yue, A. Majumdar, and P. Yang, “Fabrication of Silica Nanotube Arrays from Vertical Silicon Nanowire Templates,” J. Am. Chem. Soc., vol. 125, pp. 5254-5255, Apr. 2003.
    [4.12] S. Qiaocui, P. Tuzhi, Z. Yunu, and C. F. Yang, “An Electrochemical Biosensor with Cholesterol Oxidase/ Sol-Gel Film on a Nanoplatinum/Carbon Nanotube Electrode,” Electroanalysis, vol. 17, no. 10, pp. 857-861, Sep. 2005.
    [4.13] Y. B. Li, Y. Bando, D. Golberg, and Y. Uemura, “SiO2-sheathed InS nanowires and SiO2 nanotubes,” Appl. Phys. Lett., vol. 83, pp. 3999-4001, Sep. 2003.
    [4.14] S. C. Chiu, and Y. Y. Li, “Field-emission properties of the platinum coated SiO2 nanowires synthesized by thermal evaporation method,” J. Phys. D: Appl. Phys., vol. 41, pp. 245408, Dec. 2008. 245408.
    [4.15] A. Tiwari, and S. Gong, “Electrochemical Study of Chitosan-SiO2-MWNT Composite Electrodes for the Fabrication of Cholesterol Biosensors,” Electroanalysis, vol. 20, no. 19, pp. 2119-2126, June 2008.
    [4.16] W. C. Tsai, S. J. Wang, C. R. Tseng, W. I. Hsu, R. M. Ko, J. C. Lin, K. M. Uang, and T. M. Chen: International Conference on 1st Nano Today Conference, Biopolis, Singapore, 2009.
    [4.17] W. C. Tsai, S. J. Wang, C. R. Tseng, W. I. Hsu, R. M. Ko, J. C. Lin: International Conference on Europe Optics and Optoelectronics (EOO), Prague, Czech Republic, 2009.
    [4.18] S. J. An, J. H. Chae, G. C. Yi, and G. H. Park, “Enhanced light output of GaN-based light-emitting diodes with ZnO nanorod arrays,” Appl. Phys. Lett., vol. 92, pp. 121108, Mar. 2008.
    [4.19] K. K. Kim, S. d. Lee, H. Kim, J. C. Park, S. N. Lee, Y. Park, S. J. Park, and S. W. Kim, “Enhanced light extraction efficiency of GaN-based light-emitting diodes with ZnO nanorod arrays grown using aqueous solution,” Appl. Phys. Lett., vol. 94, pp. 071118, Feb. 2009.
    [4.20] F. Gracia, F. Yubero, J. P. Holgado, J. P. Espinos, A. R. Gonzalez-Elipe, and T. Girardeau, “SiO2/TiO2 thin films with variable refractive index prepared by ion beam induced and plasma enhanced chemical vapor deposition,” Thin Solid Films, vol. 500, pp. 19-26, Dec. 2006.
    [4.21] Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, and P. H. Chang, “Fabrication of ZnO Nanorods and Nanotubes in Aqueous Solutions,” Chem. Mater., vol. 17, no. 5, pp.1001-1006, Feb. 2005.
    [4.22] S. L. Chen, S. J. Wang, K. M. Uang, T. M. Chen, W. C. Lee, and B. W. Liou, “Fabrication of Dicing-Free Vertical-Structured High Power GaN-Based Light-Emitting Diodes with Selective Nickel Electroplating and Patterned Laser Liftoff Techniques,” IEEE Photon. Technol. Lett., vol. 19, no. 6, pp. 351-353, Mar. 2007.
    [5.1] S. Pimputkar, J. S. Speck, S. P. DenBaars and S. Nakamura, “Prospects for LED lighting,” Nat. Photon., Vol. 3, pp. 180-182, Apr. 2009.
    [5.2] M. R. Krames, O. B. Shchekin, R. M. Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting,” J. Disp. Technol., vol. 3, no. 2, pp. 160-175, June 2007.
    [5.3] S. J. Wang, K. M. Uang, S. L. Chen, Y. C. Yang, S. C. Chang, T. M. Chen, and C. H. Chen, “Use of patterned laser liftoff process and electroplating nickel layer for the fabrication of vertical-structured GaN-based light-emitting diodes,” Appl. Phys. Lett., vol. 87, no. 1, pp. 011111, July 2005.
    [5.4] S. Kim, “Photoresist Passivation Structures for Laser Lifted-Off Light Emitting Diodes,” Electrochem. Solid-State Lett., vol. 13, no. 7, pp. H240-H243, Apr. 2010.
    [5.5] E. F. Schubert, “Light-Emitting Diodes” (Academic Press, Cambridge, 2003) pp. 119.
    [5.6] C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface,” J. Appl. Phys., vol. 93, no. 11, pp. 9383-9385 June 2003.
    [5.7] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett., vol. 84, no. 6, pp. 855-857, Feb. 2004.
    [5.8] T. Fujii, A. David, Y. Gao, M. Iza, S. P. DenBaars, E. L. Hu, C. Weisbuch, and S. Nakamura, “Cone-shaped surface GaN-based light-emitting diodes,” Phys. Stat. Sol. (C), vol. 2, no. 7, pp. 2836-2840, Apr. 2005.
    [5.9] H. C. Lee, J. B. Park, J. W. Bae, P. T. T. Thuy, M. C. Yoo, and G. Y. Yeom,“Effect of the surface texturing shapes fabricated using dry etching on the extraction efficiency of vertical light-emitting diodes,” Solid-State Electron., vol. 52, pp. 1193-1996, 2008.
    [5.10] C. E. Lee, Y. C. Lee, H. C. Kuo, T. C. Lu, and S. C. Wang, “Further Enhancement of Nitride-Based Near-Ultraviolet Vertical-Injection Light-Emitting Diodes by Adopting a Roughened Mesh-Surface,” IEEE Photon. Technol. Lett., vol. 20, no. 10, pp. 803-805, May 2008.
    [5.11] H. K. Cho, S. K. Kim, D. K. Bae, B. C. Kang, J. S. Lee, and Y. H. Lee, “Laser Liftoff GaN Thin-Film Photonic Crystal GaN-Based Light-Emitting Diodes,” IEEE Photon. Technol. Lett., vol. 20, no. 24, pp. 2096-2098, Dec. 2008.
    [5.12] S. J. An, J. H. Chae, G. C. Yi, and G. H. Park, “Enhanced light output of GaN-based light-emitting diodes with ZnO nanorod arrays,” Appl. Phys. Lett., vol. 92, pp. 121108, Mar. 2008.
    [5.13] M. K. Lee, C. L. Ho, and P. C. Chen, “Light Extraction Efficiency Enhancement of GaN Blue LED by Liquid-Phase-Deposited ZnO Rods,” IEEE Photon. Technol. Lett., vol. 20, no. 4, pp. 252-254, Feb. 2008.
    [5.14] K. K. Kim, S. d. Lee, H. Kim, J. C. Park, S. N. Lee, Y. Park, S. J. Park, and S. W. Kim, “Enhanced light extraction efficiency of GaN-based light-emitting diodes with ZnO nanorod arrays grown using aqueous solution,” Appl. Phys. Lett., vol. 94, pp. 071118, Feb. 2009.
    [5.15] D. M. Kuo, S. J. Wang, K. M. Uang, T. M. Chen, W. C. Tsai, W. I. Hsu, W. C. Lee, P. R. Wang, and C. R. Tseng, “Preparation of SiO2 Nanotubes with Controllable Inner/Outer Diameter and Length Using Hydrothermally Grown ZnO Nanowires as Templates,” Jpn. J. Appl. Phys., vol. 49, pp. 04DN10, Apr. 2010.
    [5.16] S. J. Wang, S. L. Chen, K. M. Uang, W. C. Lee, T. M. Chen, and C. H. Chen, “Oxide Film as a Current Spreading Layer for Vertical-Structured High-Power GaN-Based Light-Emitting Diodes,” IEEE Photon. Technol. Lett., vol. 18, no. 10, pp. 1146-1148, May 2006.
    [5.17] S. Tao, S. Gong, Joseph C. Fanguy, X. Hu, “The application of a light guiding flexible tubular waveguide in evanescent wave absorption optical sensing,” Sens. and Actu. B, vol. 120, pp. 724-731, Mar. 2007.
    [5.18] L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Exp., vol. 12, no. 6, pp. 1025-1035, Mar. 2004.
    [5.19] S. N. Mohammad, “Contact mechanisms and design principles for nonalloyed ohmic contacts to n-GaN,” J. Appl. Phys., vol. 95, no. 9, pp. 4856-4865, May 2004.
    [6.1] H. Sugawara, M. Ishikawa, and G. Hatakoshi, “High-efficiency InGaAIP/GaAs visible light-emitting diodes,” Appl. Phys. Lett., vol. 58, no. 10, pp. 1010-1012, Mar. 1991.
    [6.2] K. H. Huang, J. G. Yu, C. P. Kuo, R. M. Fletcher, T. D. Osentowski, L. J. Stinson, and A. S. H. Liao, “Twofold efficiency improvement in high performance AlGalnP light emitting diodes in the 555-620 nm spectral region using a thick GaP window layer,” Appl. Phys. Lett., vol. 61, no. 9, pp. 1045-1047, Aug. 1992.
    [6.3] R. M. Flectcher, C. P. Kuo, T. D. Osentowski, K. H. Huang, M. G. Craford, and V. M. Robbins, “The rowth and properties of high performance AlGaInP emitters using a lattice mismatched GaP indow layer,” J. Electron. Mater., vol. 20, no. 12, pp. 1125–1130, 1991.
    [6.4] I. Schnitzer, E. Yablonovitch, C. Caneau, and T. J. Gmitter, “Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AIGaAs/GaAs/ AlGaAs double heterostructures,” Appl. Phys. Lett., vol. 62, no. 2, pp. 131-133, Jan. 1993.
    [6.5] R. H. Horng, D. S. Wuu, S. C. Wei, M. F. Huang, K. H. Chang, P. H. Liu, and K. C. Lin, “AlGaInP/AuBe/glass light-emitting diodes fabricated by wafer bonding technology,” Appl. Phys. Lett., vol. 75, no. 2, pp. 154-156, July 1999.
    [6.6] S. K. Kim, H. D. Song, H. S. Ee, H. M. Choi, H. K. Cho, Y. H. Lee, and H. G. Park, “Metal mirror assisting light extraction from patterned AlGaInP light-emitting diodes,” Appl. Phys. Lett., vol. 94, no. 10, pp. 10102, Mar. 2009.
    [6.7] W. C. Peng, and Y. S. Wu, “High-power AlGaInP light-emitting diodes with metal substrates fabricated by wafer bonding,” Appl. Phys. Lett., vol. 84, no. 11, pp. 1842-1844, Mar. 2004.
    [6.8] Y. C. Lee, C. E. Lee, H. C. Kuo, T. C. Lu, and S. C. Wang, “Enhancing the Light Extraction of (AlxGa1 x)0:5In0:5P-Based Light-Emitting Diode Fabricated via Geometric Sapphire Shaping,” IEEE Photon. Technol. Lett., vol. 20, no. 5, pp. 369-371, Mar. 2008.
    [6.9] T. Y. Tsai, Y. J. Liu, C. H. Yen, and W. C. Liu, “On an AlGaInP Multiple Quantum Well Light Emitting Diode with a Thin Carbon-Doped GaP Contact Layer Structure,” J. Electrochem. Soc., vol. 157, no. 4, pp. H459-H462, 2010.
    [6.10] S. C. Hsu, D. S. Wuu, C. Y. Lee, and R. H. Horng, “High-Efficiency 1-mm2 AlGaInP LEDs Sandwiched by ITO Omni-Directional Reflector and Current-Spreading Layer,” IEEE Photon. Technol. Lett., vol. 17, no. 7, pp. 492-494, Apr. 2007.
    [6.11] S. C. Hsu, D. S. Wuu, X. Zheng, and R. H. Horng, “Electron-Beam and Sputter-Deposited Indium–Tin Oxide Omnidirectional Reflectors for High-Power Wafer-Bonded AlGaInP Light-Emitting Diodes,” J. Electrochem. Soc., vol. 156, no. 4, pp. H281-H284, 2009.
    [6.12] L. J Yan, C. C. Y. M. L. Lee, S. J. Tu, C. S. Chang, and J. K. Sheu, “AlGaInP/GaP Heterostructures Bonded with Si Substrate to Serve as Solar Cells and Light Emitting Diodes,” J. Electrochem. Soc., vol. 157, no. 4, pp. H452-H454, Mar. 2010.
    [6.13] K. M. Uang, S. J. Wang, S. L. Chen, C. K. Wu, S. C. Chang, T. M. Chen, and B. W. Liou, “High Power GaN-Based LEDs with Transparent Indium-Zinc-Oxide Films”, Jpn. J. Appl. Phys., Vol. 44, No. 4B, pp. 2516-2519, 2005.
    [6.14] T. Gessmann, E. F. Schubert, J. W. Graff, K. Streubel, and C. Karnutsch, “Omnidirectional Reflective Contacts for Light-Emitting Diodes,” IEEE Electron Dev. Lett., vol. 24, no. 10, pp. 683-685, Oct. 2003.
    [6.15] Y. Hosokawa, W. Nabekura, T. Hoshina, R. Takeuchi, K. Sakaue, and T. Udagawa, “High-power ohmic-electrodes dispersive AlGaInP double-hetero structure yellowish-green light-emitting diodes,” J. Cryst. Grow., vol. 221, pp. 652-656, 2000.

    下載圖示 校內:2016-07-15公開
    校外:2016-07-15公開
    QR CODE