簡易檢索 / 詳目顯示

研究生: 林孟佑
Lin, Meng-Yu
論文名稱: 多階層功率因數修正轉換器之飛馳電容電壓平衡研究
Study on Flying-Capacitor Voltage Balancing for Multilevel Power Factor Correction Converter
指導教授: 李嘉猷
Lee, Jia-You
共同指導教授: 李祖聖
Li, Tzuu-Hseng S.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 118
中文關鍵詞: 數位控制多階層功率因數修正器寬能隙功率開關元件
外文關鍵詞: Digtal Control, Multilevel PFC, Wide Bandgap Semiconductors
相關次數: 點閱:47下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多階層功率因數修正轉換器架構與一般轉換器架構相比,開關元件承受的跨壓較低,使同樣輸出規格的轉換器能夠使用耐壓較低的開關元件實現,並具有較低的開關切換損失。本論文主要針對使用寬能隙功率開關元件 GaN 與 SiC 實作之多階層功率因數修正轉換器,進行閉迴路數位控制法之研究,基於連續導通模式之平均電流控制法,設計電壓、電流與飛馳電容電壓平衡控制補償迴路,並使用相移 PWM 開關調變方式,同時研究架構中各模式下飛馳電容之充放電行為,進而設計飛馳電容電壓平衡迴路,進行飛馳電容電壓的主動控制,於系統設計規格下可使飛馳電容電壓 ??1 與 ??2 分別維持於1⁄3 與2⁄3 輸出電壓之目標值。本論文將透過模擬軟體進行電路功能驗證,並透過實體電路實現單相多階層功率因數修正轉換器的控制器,實驗結果系統可在 300 kHz 開關切換頻率,110 ???? 交流輸入下,輸出±200 ?之直流電壓,同時達到功率因數修正效果,在輸出功率 1kW 下效率可達到 95.1%,PF 值為 0.94。

    Multilevel power factor correction converters differ from conventionalconverters in that the switching components have lower voltage stress, allowing theuse of lower voltage-rated switching components to achieve the same output specifications and lower switching losses. This thesis focuses on the closed-loopdigital control methods for multilevel PFC converters implemented with widebandgap power switches, specifically GaN and SiC. Based on the average current control method in continuous conduction mode, this study designs voltage, current,and flying capacitor voltage balance control compensation loops. Phase-shift PWM switching modulation is employed, and the charging and discharging behaviors of theflying capacitors in various modes of the architecture are analyzed. Subsequently, a flying capacitor voltage balance loop is designed for active control of the flying capacitor voltages, maintaining the voltages ??1 and ??2 at 1/3 and 2/3 of the output voltage, respectively, under the system design specifications. Circuit functionality will be verified through simulation software, and a single-phase multilevel PFC converter controller will be physically implemented. Experimental results show that the system, operating at a switching frequency of 300 kHz and an AC input of 110 ???? , can output a ±200 V DC voltage while achieving power factor correction.Under an output power of 1kW, the efficiency can reach 95.1%, and the Power Factoris 0.94.

    中文摘要 I 英文摘要 II 英文延伸摘要 III 誌謝 XI 目錄 XII 表目錄 XIV 圖目錄 XV 第一章 緒論 1 1-1 研究動機與目的 1 1-2 研究背景 3 1-3 研究方法 13 1-4 論文大綱 14 第二章 功率因數修正技術與飛馳電容平衡控制 15 2-1 前言 15 2-2 功率因數修正技術 15 2-3 功率因數修正方式與控制法 21 2-4 飛馳電容平衡控制法 26 第三章 單相多階層功率因數修正轉換器分析與控制 30 3-1 前言 30 3-2 雙輸出多階層飛馳電容式功率因數修正轉換器 30 3-3 閉迴路控制架構 36 第四章 數位微控制器與系統控制程式設計 53 4-1 前言 53 4-2 數位微控制器簡介 55 4-3 系統控制程式設計 58 第五章 系統模擬與實驗量測 62 5-1 前言 62 5-2 感測訊號波形與微控制器ADC取樣情形觀測 62 5-3 雙輸出多階層功率因數修正轉換器電路模擬 70 5-4 雙輸出多階層功率因數修正轉換器實驗量測 76 第六章 結論與未來研究方向 83 6-1 結論 83 6-2 未來研究方向 84 參考文獻 85 附錄 93

    [1] J. W. Kolar and F. C. Zach, “A novel three-phase utility interface minimizing line current harmonics of high power telecommunications rectifiers modules,” IEEE Trans. Ind. Electron., vol. 44, pp. 456-467, Aug. 1997.
    [2] F. C. Lee, Q. Li, Z. Liu, Y. Yang, C. Fei, and M. Mu, ‘‘Application of GaN devices for 1 kW server power supply with integrated magnetics,’’ CPSS Trans. Power Electron. Appl., vol. 1, no. 1, pp. 3–12, Dec. 2016.
    [3] J. Millán, P. Godignon, X. Perpiñà, A. Pérez-Tomás and J. Rebollo, "A survey of wide bandgap power semiconductor devices," IEEE Trans. Power Electron., vol. 29, no. 5, pp. 2155-2163, May 2014.
    [4] E. A. Jones, F. F. Wang and D. Costinett, "Review of commercial GaN power devices and GaN-based converter design challenges," IEEE J. Emerg. Sel. Top. Power Electron., vol. 4, no. 3, pp. 707-719, Sept. 2016.
    [5] Y. Yang, Z. Liu, F. C. Lee, and Q. Li, “Analysis and filter design of differential mode EMI noise for GaN-based interleaved MHz critical mode PFC converter,” in Proc. IEEE Energy Convers. Congr. Expo., Sep. 2014, pp. 4784–4789.
    [6] Z. Liu, Z. Huang, F. C. Lee and Q. Li, "Digital-based interleaving control for GaN-based MHz CRM Totem-pole PFC," IEEE J. Emerg. Sel. Top. Power Electron., vol. 4, no. 3, pp. 808-814, Sept. 2016.
    [7] K. H. Liu and F. C. Y. Lee, "Zero-voltage switching technique in DC/DC converters," IEEE Trans. Power Electron., vol. 5, no. 3, pp. 293-304, July 1990.
    [8] G. Hua, C. S. Leu, Y. Jiang, and F. C. Y. Lee, “Novel zero-voltage transition PWM converters,” IEEE Trans. Power Electron., vol. 9, no. 2, pp. 213–219, Mar. 1994.
    [9] G. Hua and F. C. Lee, "Soft-switching techniques in PWM converters," IEEE Trans. Ind. Electron., vol. 42, no. 6, pp. 595-603, Dec. 1995.
    [10] J. C. Salmon, "Circuit topologies for single-phase voltage-doubler boost rectifiers," IEEE Trans. Power Electron., vol. 8, no. 4, pp. 521-529, Oct. 1993.
    [11] D. M. Mitchell, “AC-DC converter having an improved power factor,” U.S. Patent 4 412 277, Oct. 25, 1983.
    [12] D. Tollik and A. Pietkiewicz, “Comparative analysis of 1-phase active power factor correction topologies,” in Proc. Int. Telecommunication Energy Conf., Oct. 1992, pp. 517–523.
    [13] A. F. Souza and I. Barbi, “High power factor rectifier with reduced conduction and commutation losses,” in Proc. Int. Telecommunication Energy Conf., Jun. 1999, pp. 8.1.1–8.1.5.
    [14] L. Huber, Y. Jang and M. M. Jovanovic, "Performance evaluation of bridgeless PFC boost rectifiers," IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390, May 2008.
    [15] Y. Jang and M. M. Jovanovic, "A bridgeless PFC boost rectifier with optimized magnetic utilization," IEEE Trans. Power Electron., vol. 24, no. 1, pp. 85-93, Jan. 2009.
    [16] F. Musavi, M. Edington, W. Eberle and W. G. Dunford, "Evaluation and efficiency comparison of front end AC-DC plug-in hybrid charger topologies," IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 413-421, March 2012.
    [17] J. C. Salmon, “Circuit topologies for PWM boost rectifiers operated from 1-phase and 3-phase ac supplies and using either single or split dc rail voltage outputs,” in Proc. IEEE Applied Power Electronics Conf., Mar. 1995, pp. 473–479.。
    [18] L. Xue, Z. Shen, D. Boroyevich, and P. Mattavelli, “GaN-based high frequency totem-pole bridgeless PFC design with digital implementation,” in Proc. IEEE Appl. Power Electron. Conf. Expo., Mar. 2015, pp. 759–766.
    [19] Q. Huang and A. Q. Huang, "Review of GaN totem-pole bridgeless PFC," CPSS Trans. Power Electron. Appl., vol. 2, no. 3, pp. 187-196, Sept. 2017.
    [20] Z. Liu, F. C. Lee, Q. Li, and Y. Yang, “Design of GaN MHz totem-pole PFC rectifier,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 4, no. 3, Sept. 2016, pp. 799-807.
    [21] A. M. Elrajoubi, S. S. Ang and K. George, "Design and analysis of a new GaN-based AC/DC converter for battery charging application," IEEE Trans. Ind. Appl., vol. 55, no. 4, pp. 4044-4052, July-Aug. 2019.
    [22] K. A. Corzine and J. R. Baker, "Reduced-parts-count multilevel rectifiers," IEEE Trans. Ind. Electron., vol. 49, no. 4, pp. 766-774, Aug. 2002.
    [23] J. Wang, S. Feng and F. Kurokawa, "Analog controlled critical conduction mode three-phase Vienna rectifier," IEEE Trans. Ind. Appl., vol. 59, no. 5, pp. 6012-6024, Sept.-Oct. 2023.
    [24] Q. Huang, Q. Ma, P. Liu, A. Q. Huang and M. A. de Rooij, "99% efficient 2.5-kW four-level flying capacitor multilevel GaN Totem-pole PFC," IEEE J. Emerg. Sel. Top. Power Electron., vol. 9, no. 5, pp. 5795-5806, Oct. 2021.
    [25] D. Floricau and V. Pangratie, “New unidirectional five-level VIENNA rectifier for high-current applications,” in Proc. IEEE 39th Annu. Conf. IEEE Ind. Electron. Soc., 2013, pp. 1080–1085.
    [26] J. Chen, F. Deng, Q. Heng, and C. Wang, ‘‘A three-phase hybrid four-level rectifier,’’ in Proc. IEEE Innov. Smart Grid Technol. (ISGT), Chengdu, China, May 2019, pp. 3920–3924.
    [27] IEEE Standard for Harmonic Control in Electric Power Systems, IEEE Std 519-2022 (Revision of IEEE Std 519-2014), Aug. 2022.
    [28] Y. Suzuki, T. Teshima, I. Sugawara, and A. Takeuchi, “Experimental studies on active and passive PFC circuits,” in Proc. IEEE Int. Telecommun. Energy Conf., 1997, pp. 571-578.
    [29] K. H. Liu and Y. L. Lin, “Current waveform distortion in power factor correction circuits employing discontinuous mode boost converter,” in Proc. IEEE PESC’89, 1989, pp. 825–829.
    [30] D. S. L. Simonetti, J. L. F. Viera and G. C. D. Sousa, "Modeling of the high-power-factor discontinuous boost rectifiers," IEEE Trans. Ind. Electron., vol. 46, no. 4, pp. 788-795, Aug. 1999.
    [31] K. De Gusseme, D. M. Van de Sype, A. P. M. Van den Bossche and J. A. Melkebeek, "Input-current distortion of CCM boost PFC converters operated in DCM," discontinuous boost rectifiers," IEEE Trans. Ind. Electron., vol. 54, no. 2, pp. 858-865, April 2007.
    [32] X. Zhang and J. W. Spencer, "Analysis of boost PFC converters operating in the discontinuous conduction mode," IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3621-3628, Dec. 2011.
    [33] R. Redl and B. P. Erisman, “Reducing distortion in peak-current controlled boost power-factor correctors,” in Proc. IEEE Int. Power Electron. Congr., 1994, pp. 92-100.
    [34] J. P. Gegner and C. Q. Lee, ‘‘Linear peak current mode control: A simple active power factor correction control technique for continuous conduction mode,’’ in Proc. PESC Rec., 27th Annu. IEEE Power Electron. Spec. Conf., Jun. 1996, pp. 23–27.
    [35] Z. Lai and K. M. Smedley, ““A family of continuous-conduction-mode power-factor-correction controllers based on the general pulse-width modulator,” IEEE Trans. Power Electron., vol. 13, no. 3, pp. 501–510, May 1998.
    [36] J. Rajagopalan, F. C. Lee, and P. Nora, “A general technique for derivation of average current mode control laws for single-phase power-factor correction circuits without input voltage sensing,” IEEE Trans. Power Electron., vol. 14, no. 4, pp. 663-672, Jul. 1999.
    [37] H.-J. Kim, G.-S. Seo, B.-H. Cho, and H. Choi, “A simple average current control with on-time doubler for multiphase CCM PFC converter,” IEEE Trans. Power Electron., vol. 30, no. 3, pp. 1683–1693, Mar. 2015.
    [38] J. Wang, H. Eto and F. Kurokawa, "Optimal zero-voltage-switching method and variable ON-time control for predictive boundary conduction mode boost PFC converter," IEEE Trans. Ind. Appl., vol. 56, no. 1, pp. 527-540, Jan.-Feb. 2020.
    [39] W. C. Cheng and C. L. Chen, "Optimal lowest-voltage-switching for boundary mode power factor correction converters," IEEE Trans. Power Electron., vol. 30, no. 2, pp. 1042-1049, Feb. 2015.
    [40] Y. P. Su, C. L. Ni, C. Y. Chen, Y. T. Chen, J. C. Tsai, and K. H. Chen, “Boundary conduction mode controlled power factor corrector with line voltage recovery and total harmonic distortion improvement techniques,” IEEE Trans. Power Electron., vol. 61, no. 7, pp. 3220–3231, Jul. 2014.
    [41] S. Qin, Y. Lei, Z. Ye, D. Chou, and R. C. N. Pilawa-Podgurski, “A high power-density power factor correction front end based on seven-level flying capacitor multilevel converter,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 7, no. 3, pp. 1883–1898, Sep. 2019.
    [42] R. H. Wilkinson, T. A. Meynard, and H. du Toit Mouton, “Natural balance of multicell converters: The general case,” IEEE Trans. Power Electron., vol. 21, no. 6, pp. 1658–1666, Nov. 2006.
    [43] R. Stala et al., “Results of investigation of multicell converters with balancing circuit—Part I,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2610–2619, Jul. 2009.
    [44] M. Khazraei, H. Sepahvand, K. A. Corzine, and M. Ferdowsi, “Active capacitor voltage balancing in single-phase flying-capacitor multilevel power converters,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 769–778, Feb. 2012.
    [45] A. K. Sadigh, V. Dargahi, and K. A. Corzine, “New active capacitor voltage balancing method for flying capacitor multicell converter based on logic-form equations,” IEEE Trans. Ind. Electron., vol. 64, no. 5, pp. 3467–3478, May 2017.
    [46] B. McGrath and D.G. Holmes, "Enhanced voltage balancing of a flying capacitor multilevel converter using phase disposition modulation," in Proc. IEEE Energy Convers. Congr. Expo (ECCE), San Jose, CA, Sep 2009, pp. 1- 6.
    [47] A. Shukla, A. Ghosh, and A. Joshi, “Natural balancing of flying capacitor voltages in multicell inverter under PD carrier-based PWM,” IEEE Trans. Power Electron., vol. 26, no. 6, pp. 1682–1693, Jun. 2011.
    [48] A. M. Y. M. Ghias, J. Pou, V. G. Agelidis, and M. Ciobotaru, “Voltage balancing method for a flying capacitor multilevel converter using phase disposition PWM,” IEEE Trans. Ind. Electron., vol. 61, no. 12, pp. 6538–6546, Dec. 2014.
    [49] A. Stillwell, E. Candan, and R. C. N. Pilawa-Podgurski, “Active voltage balancing in flying capacitor multi-level converters with valley current detection and constant effective duty cycle control,” IEEE Trans. Power Electron., vol. 34, no. 11, pp. 11429–11441, Nov. 2019.
    [50] S. Thielemans, A. Ruderman, B. Reznikov, and J. Melkebeek, “Improved natural balancing with modified phase-shifted PWM for singleleg five-level flying-capacitor converters,” IEEE Trans. Power Electron., vol. 27, no. 4, pp. 1658–1667, Apr. 2012.
    [51] Q. Ma, Q. Huang, and A. Q. Huang, ‘‘Dual-loop high speed voltage balancing control for high frequency four-level GaN totem-pole PFC with small flying capacitors,’’ in Proc. IEEE Energy Convers. Congr. Expo. (ECCE), Oct. 2020, pp. 6218–6225.
    [52] B. P. McGrath and D. G. Holmes, “Natural capacitor voltage balancing for a flying capacitor converter induction motor drive,” IEEE Trans. Power Electron., vol. 24, no. 6, pp. 1554–1561, Jun. 2009.
    [53] B. P. McGrath and D. G. Holmes, “Analytical determination of the capacitor voltage balancing dynamics for three-phase flying capacitor converters,” IEEE Trans. Ind. Appl., vol. 45, no. 4, pp. 1425–1433, Jul./Aug. 2009.
    [54] V. Vorperian, “Simplified analysis of PWM converters using model of PWM switch. Continuous conduction mode,” IEEE Trans. Aerosp. Electron. Syst., vol. 26, no. 3, pp. 490–496, May 1990.
    [55] “Average current mode interleaved PFC control,” Nov. 2016.[Online].
    Available: https://www.nxp.com/docs/en/application-note/AN5257.pdf.
    [56] D. M. Van de Sype, K. De Gusseme, A. P. M. Van den Bossche, and J. A. Melkebeek, “Duty-ratio feedforward for digitally controlled boost PFC converters,” IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 108–115, Feb. 2005.
    [57] C. Y. Lu, D. H. Lin and H. C. Chen, "Decoupled design of voltage regulating and balancing controls for four-level flying capacitor converter," IEEE Trans. Ind. Electron., vol. 68, no. 12, pp. 12152-12161, Dec. 2021.
    [58] TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual, TEXAS INSTRUMENTS, 2013.
    [59] TMS320F28379D Datasheet, TEXAS INSTRUMENTS, 2013.
    [60] Texas Instruments, “How to reduce current spikes at AC zero-crossing for totem-pole PFC”, 2015. [Online]. Available: https://www.ti.com/lit/an/slyt650/slyt650.pdf?ts=1718872575075&ref_url=https%253A%252F%252Fwww.google.com%252F

    無法下載圖示 校內:2029-08-15公開
    校外:2029-08-15公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE