| 研究生: |
黃冠傑 Huang, Kuan-Chieh |
|---|---|
| 論文名稱: |
混合供電電路設計實現及其於手工具機之應用 Design and Realization of Hybrid Power Supply Circuit with Applications to Hand-Held Tools |
| 指導教授: |
黃世杰
Huang, Shyh-Jier |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 混合供電電路 、能量調整能力 、電池殘量平衡 、容量擴充機制 、可攜式 |
| 外文關鍵詞: | hybrid power supply circuit, energy regulation capability, state-of-charge equalization, capacity-expansion mechanism, portability |
| 相關次數: | 點閱:92 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來由於手工具機的需求不斷增加,如何兼具提升手工具機便利性與安全性,更已成為重要研究議題。故本論文主旨即在於研發適用於手工具機應用之混合供電電路,並同時針對整合架構分析、電路操作原理、回授控制策略與應用方法,分別加以深入分析與探討。
於本論文研究中,首先提出具有能量調整能力之混合供電系統架構,並經由電路整合與變壓器設計,可減少電感元件與超級電容使用數量,同時輔以電路分析及硬體電路實作,證實所提電路不僅具有能量調節及電力調度控制能力,更可確保電池電源獲得良好保護。接著本論文考量可攜式手工具機之使用特性,提出具有輸入容量擴充與電池殘量平衡能力之混合供電系統設計,該設計可依不同應用場合,彈性擴充所需的電源輸入容量,並且確保每個輸入電池不會有過度放電情形,確保系統高安全性。
此外,為了提供兩組手工具機直流電源,本論文提出一套可控的雙輸出直流轉換器,其係採用順向式與返馳式轉換器之整合,並輔以適當回授控制,以達到穩定的雙輸出電壓。綜合上述控制策略與系統架構,本論文所設計之混合供電系統確實具備元件整合與應用便利性之優點,研究成果可作為可攜式手工具機之開發設計參考。
Following the increased demand of hand-held tools, the convenience of usage as well as the safe operation of this equipment has become more important than ever. Therefore, this dissertation is aimed to develop a hybrid power supply circuit suitable for hand-held tool applications, in which the integrated architecture analysis, circuit operation principles, feedback control strategy, and application approach are all investigated in details.
This dissertation starts with the development of hybrid power system architecture with energy regulation capabilities. Through circuit integration and transformer design, the number of inductors and supercapacitors is seen reduced significantly. Then, with the assistance of circuit analysis and hardware circuit realization, this circuit is confirmed to own the capability of energy regulation and power dispatching control, where the protection of battery sources in the power supply is also well accomplished. Subsequently, considering the features of portable hand-held tools, this dissertation proposes a hybrid power supply system design with the input-capacity expansion and battery state-of-charge equalization. With the design proposed in this study, it is able to expand the required input capacity based on different applications, ensuring that each input battery is not over-discharged and reaching the safety requirements of the system.
In addition, in order to provide two sets DC power supplies of hand-held tools, this dissertation further proposes the controllable dual-output DC converters. This proposed converter integrates the forward converters with flyback converters along with the feedback control so as to achieve a stable dual-output of DC voltage. Through the aforementioned control strategy and system architecture, the hybrid power supply system designed proposed in this dissertation comes with the merits of component integration and application convenience. The research results are served as useful references for the development and design of portable hand-held tools.
[1] A. Zoran, R. Shilkrot, P. Goyal, P. Maes, and J. A. Paradiso, “The Wise Chisel: The Rise of the Smart Handheld Tool,” IEEE Pervasive Computing, Vol. 13, No. 3, pp. 48-57, July-Sept. 2014.
[2] V. N. Khmelev, A. N. Slivin, A. D. Abramov, M. E. Vakar, and V. A. Nesterov, “Development of Ultrasonic Welding Technology by Hand Tool,” 2016 17th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices, Erlagol, Russia, pp. 280-284, June-July 2016.
[3] M. Shaqura and J. S. Shamma, “A Novel Gripper Design for Multi Hand Tools Grasping under Tight Clearance Constraints and External Torque Effect,” 2017 IEEE International Conference on Mechatronics and Automation, Takamatsu, Japan, pp. 840-845, Aug. 2017.
[4] A. Dianov, N. Kim, Y. Kim, and S. Lim, “Substitution of the Universal Motor Drives with Electrolytic Capacitorless PMSM Drives in Home Appliances,” 2015 9th International Conference on Power Electronics and ECCE Asia, Seoul, South Korea, pp. 1631-1637, June 2015.
[5] G. H. Phan, C. Hansen, P. Tommasino, A. Hussain, and D. Campolo, “Instrumentation of a Hand-Held Power Tool for Capturing Dynamic Interaction during Finishing Tasks,” 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics, Singapore, Singapore, pp. 906-911, June 2016.
[6] H. Mashiko and K. Akatsu, “Design of Switched Reluctance Motors for Electric Hand Tools,” 2016 XXII International Conference on Electrical Machines, Lausanne, Switzerland, pp. 1572-1576, Sept. 2016.
[7] E. W. Lin and M. Wong, “Improving the Efficiency of Taguchi with Six Sigma- A Case Study of Hand Tool Drilling Process Production,” 2014 IEEE International Conference on Management of Innovation and Technology, Singapore, Singapore, pp. 549-554, Sept. 2014.
[8] Q. Xie, D. Shin, N. Chang, and M. Pedram, “Joint Charge and Thermal Management for Batteries in Portable Systems with Hybrid Power Sources,” IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, Vol. 35, No. 4, pp. 611-622, April 2016.
[9] S. Saxena, G. Sanchez, and M. Pecht, “Batteries in Portable Electronic Devices: A User's Perspective,” IEEE Ind. Electron. Magazine, Vol. 11, No. 2, pp. 35-44, June 2017.
[10] J. Jaguemont, L. Boulon, P. Venet, Y. Dubé, and A. Sari, “Lithium-Ion Battery Aging Experiments at Subzero Temperatures and Model Development for Capacity Fade Estimation,” IEEE Trans. Vehicular Technology, Vol. 65, No. 6, pp. 4328-4343, June 2016.
[11] X. Hu, J. Jiang, D. Cao, and B. Egardt, “Battery Health Prognosis for Electric Vehicles Using Sample Entropy and Sparse Bayesian Predictive Modeling,” IEEE Trans. Ind. Electron., Vol. 63, No. 4, pp. 2645-2656, April 2016.
[12] K. Smith, A. Saxon, M. Keyser, B. Lundstrom, Z. Cao, and A. Roc, “Life Prediction Model for Grid-Connected Li-ion Battery Energy Storage System,” 2017 American Control Conference, Seattle, USA, pp. 4062-4068, May 2017.
[13] G. A. J. Elliott, S. Raabe, G. A. Covic, and J. T. Boys, “Multiphase Pickups for Large Lateral Tolerance Contactless Power-Transfer Systems,” IEEE Trans. Ind. Electron., Vol. 57, No. 5, pp. 1590-1598, May 2010.
[14] M. Pagano and L. Piegari, “Hybrid Electrochemical Power Sources for Onboard Applications,” IEEE Trans. Energy Conv., Vol. 22, No. 2, pp. 450-456, June 2007.
[15] K. W. Hu, P. H. Yi, and C. M. Liaw, “An EV SRM Drive Powered by Battery/Supercapacitor with G2V and V2H/V2G Capabilities,” IEEE Trans. Ind. Electron., Vol. 62, No. 8, pp. 4714-4727, Aug. 2015.
[16] A. Kuperman, I. Aharon, S. Malki, and A. Kara, “Design of a Semiactive Battery-Ultracapacitor Hybrid Energy Source,” IEEE Trans. Power Electron., Vol. 28, No. 2, pp. 806-815, Feb. 2013.
[17] H. Yin, C. Zhao, M. Li, and C. Ma, “Utility Function-Based Real-Time Control of a Battery-Ultracapacitor Hybrid Energy System,” IEEE Trans. Ind. Inf., Vol. 11, No. 1, pp. 220-231, Feb. 2015.
[18] I. J. Cohen, D. A. Wetz, B. J. McRee, Q. Dong, and J. M. Heinzel, “Fuzzy Logic Control of a Hybrid Energy Storage Module for Use as a High Rate Prime Power Supply,” IEEE Trans. Dielectrics and Electrical Insulation, Vol. 24, No. 6, pp. 3887-3893, Dec. 2017.
[19] F. Ongaro, S. Saggini, and P. Mattavelli, “Li-Ion Battery-Supercapacitor Hybrid Storage System for a Long Lifetime, Photovoltaic-Based Wireless Sensor Network,” IEEE Trans. Power Electron., Vol. 27, No. 9, pp. 3944-3952, Sept. 2012.
[20] F. Segura, J. M. Andújar, and E. Durán, “Analog Current Control Techniques for Power Control in PEM Fuel-Cell Hybrid Systems: A Critical Review and a Practical Application,” IEEE Trans. Ind. Electron., Vol. 58, No. 4, pp. 1171-1184, April 2011.
[21] B. Hredzak, V. G. Agelidis, and G. D. Demetriades, “A Low Complexity Control System for a Hybrid DC Power Source Based on Ultracapacitor–Lead–Acid Battery Configuration,” IEEE Trans. Power Electron., Vol. 29, No. 6, pp. 2882-2891, June 2014.
[22] T. Mesbahi, N. Rizoug, F. Khenfri, P. Bartholomeüs, and P. Le Moigne, “Dynamical Modelling and Emulation of Li-ion Batteries–Supercapacitors Hybrid Power Supply for Electric Vehicle Applications,” IET Electrical Systems in Transportation, Vol. 7, No. 2, pp. 161-169, June 2017.
[23] A. J. Moradewicz and M. P. Kazmierkowski, “Contactless Energy Transfer System with FPGA-Controlled Resonant Converter,” IEEE Trans. Ind. Electron., Vol. 57, No. 9, pp. 3181-3190, Sept. 2010.
[24] X. Dai and Y. Sun, “An Accurate Frequency Tracking Method Based on Short Current Detection for Inductive Power Transfer System,” IEEE Trans. Ind. Electron., Vol. 61, No. 2, pp. 776-783, Feb. 2014.
[25] W. X. Zhong, C. K. Lee, and S. Y. R. Hui, “General Analysis on the Use of Tesla's Resonators in Domino Forms for Wireless Power Transfer,” IEEE Trans. Ind. Electron., Vol. 60, No. 1, pp. 261-270, Jan. 2013.
[26] D. Kürschner, C. Rathge, and U. Jumar, “Design Methodology for High Efficient Inductive Power Transfer Systems with High Coil Positioning Flexibility,” IEEE Trans. Ind. Electron., Vol. 60, No. 1, pp. 372-381, Jan. 2013.
[27] R. Shanmugasundram, K. M. Zakariah, and N. Yadaiah, “Implementation and Performance Analysis of Digital Controllers for Brushless DC Motor Drives,” IEEE/ASME Trans. Mechatron., Vol. 19, No. 1, pp. 213-224, Feb. 2014.
[28] G. Pellegrino, E. Armando, and P. Guglielmi, “An Integral Battery Charger with Power Factor Correction for Electric Scooter,” IEEE Trans. Power Electron., Vol. 25, No. 3, pp. 751-759, March 2010.
[29] B. Hredzak, V. G. Agelidis, and G. D. Demetriades, “A Low Complexity Control System for a Hybrid DC Power Source Based on Ultracapacitor-Lead-Acid Battery Configuration,” IEEE Trans. Power Electron., Vol. 29, No.62, pp. 2882-2891, June 2014.
[30] S. Li and Z. Liu, “Adaptive Speed Control for Permanent-Magnet Synchronous Motor System with Variations of Load Inertia,” IEEE Trans. Ind. Electron., Vol. 56, No. 8, pp. 3050-3059, Aug. 2009.
[31] M. S. Zaky, M. M. Khater, S. S. Shokralla, and H. A. Yasin, “Wide-Speed-Range Estimation with Online Parameter Identification Schemes of Sensorless Induction Motor Drives,” IEEE Trans. Ind. Electron. Vol. 56, No. 5, pp. 1699-1707, May 2009.
[32] M. J. Vasallo, J. M. Andújar, C. García, and J. J. Brey, “A Methodology for Sizing Backup Fuel-Cell/Battery Hybrid Power Systems,” IEEE Trans. Ind. Electron., Vol. 57, No. 6, pp. 1964-1975, June 2010.
[33] M. Kabalo, D. Paire, B. Blunier, D. Bouquain, M. G. Simoes, and A. Miraoui, “Experimental Validation of High-Voltage-Ratio Low-Input-Current-Ripple Converters for Hybrid Fuel Cell Supercapacitor System,” IEEE Trans. Vehicular Technology, Vol. 61, No. 8, pp. 3430-3440, Oct. 2012.
[34] Amin, R. T. Bambang, A. S. Rohman, C. J. Dronkers, R. Ortega, and A. Sasongko, “Energy Management of Fuel Cell/Battery/Supercapacitor Hybrid Power Sources Using Model Predictive Control,” IEEE Trans. Ind. Inf., Vol. 10, No. 4, pp. 1992-2002, Nov. 2014.
[35] M. Phattanask, R. Gavagsaz, J. P. Martin, B. N. Mobarakeh, S. Pierfederici, and B. Davat, “Control of Hybrid Energy Source Comprising a Fuel Cell and Two Storage Devices Using Isolated Three-Port Bidirectional DC-DC Converters,” IEEE Trans. Ind. Appl., Vol. 51, No. 1, pp. 491-497, Feb. 2015.
[36] Z. Ding, C. Yang, Z. Zhang, C. Wang, and S. Xie, “A Novel Soft-Switching Multiport Bidirectional DC-DC Converter for Hybrid Energy Storage System,” IEEE Trans. Power Electron., Vol. 29, No. 4, pp. 1595-1609, April 2014.
[37] M. Farhadi and O. Mohammed, “Adaptive Energy Management in Redundant Hybrid DC Microgrid for Pulse Load Mitigation,” IEEE Trans. Smart Grid, Vol. 6, No. 1, pp. 54-62, Jan. 2015.
[38] K. R. Sree and A. K.Rateore, “Hybrid Modulated Extended Secondary Universal Current-Fed ZVS Converter for Wide Voltage Range: Analysis, Design, and Experimental,” IEEE Trans. Ind. Electron., Vol. 62, No. 7, pp. 4471-4480, July 2015.
[39] S. N. Motapon, L. A. Dessaint, and K. A. Haddad, “A Comparative Study of Energy Management Schemes for a Fuel-Cell Hybrid Emergency Power System of More-Electric Aircraft,” IEEE Trans. Ind. Electron., Vol. 61, No. 3, pp. 1320-1334, March 2014.
[40] A. Ghazanfari, M. Hamzeh, H. Mokhtari, and H. Karimi, “Active Power Management of Multihybrid Fuel Cell/Supercapacitor Power Conversion System in a Medium Voltage Microgrid,” IEEE Trans. Smart Grid, Vol. 3, No. 4, pp. 1903-1910, Dec. 2012.
[41] Z. Zhang, Z. Ouyang, O. C. Thomsen, and M. A. E. Andersen, “Analysis and Design of a Bidirectional Isolated DC-DC Converter for Fuel Cell and Supercapacitors Hybrid System,” IEEE Trans. Power Electron., Vol. 27, No. 2, pp. 848-859, Feb. 2012.
[42] C. Restrepo, J. Calvente, A. Cid-Pastor, A. E. Aroudi, and R. Giral, “A Noninverting Buck-Boost DC-DC Switching Converter with High Efficiency and Wide Bandwidth,” Power Electronics, IEEE Trans. Power Electron., Vol. 26, No. 9, pp. 2490-2503, Sept. 2011.
[43] W. Inam, K. K. Afridi, and D. J. Perreault, “High Efficiency Resonant DC/DC Converter Utilizing a Resistance Compression Network,” IEEE Trans. Power Electron., Vol. 29, No. 8, pp. 4126-4135, Aug. 2014.
[44] J. D. Dasika, B. Bahrani, M. Saeedifard, A. Karimi, and A. Rufer, “Multivariable Control of Single-Inductor Dual-Output Buck Converters,” IEEE Trans. Power Electron., Vol. 29, No. 4, pp. 2061-2070, April 2014.
[45] B. Wang, L. Xian, V. R. K. Kanamarlapudi, K. J. Tseng, A. Ukil, and H. B. Gooi, “A Digital Method of Power-Sharing and Cross-Regulation Suppression for Single-Inductor Multiple-Input Multiple-Output DC–DC Converter,” IEEE Trans. Ind. Electron., Vol. 64, No. 4, pp. 2836-2847, April 2017.
[46] A. Nahavandi, M. T. Hagh, M. B. B. Sharifian, and S. Danyali, “A Nonisolated Multi-input Multi-output DC–DC Boost Converter for Electric Vehicle Applications,” IEEE Trans. Power Electron., Vol. 30, No. 4, pp. 1818-1835, April 2015.
[47] H. Behjati and A. Davoudi, “A Multiple-Input Multiple-Output DC-DC Converter,” IEEE Trans. Ind. Appl., Vol. 49, No. 3, pp. 1464-1479, May-June 2013.
[48] S. Y. Yu and A. Kwasinski, “Analysis of Soft-Switching Isolated Time-Sharing Multiple-Input Converters for DC Distribution Systems,” IEEE Trans. Power Electron., Vol. 28, No. 4, pp. 1783-1794, April 2013.
[49] E. Sanchis-Kilders, A. Ferreres, J. L. Gasent-Blesa, E. Maset, V. Esteve, J. Jordan, and J. B. Ejea, “Stability Improvement of Isolated Multiple-Output DC/DC Converter Using Coupled Inductors,” IEEE Trans. Aerospace and Electron. System, Vol. 52, No. 4, pp. 1644-1653, Aug. 2016.
[50] R. J. Wai and J. J. Liaw, “High-Efficiency-Isolated Single-Input Multiple-Output Bidirectional Converter,” IEEE Trans. Power Electron., Vol. 30, No. 9, pp. 4914-4930, Sept. 2015.
[51] S. Danyali, S. H. Hosseini, and G. B. Gharehpetian, “New Extendable Single-Stage Multi-input DC–DC/AC Boost Converter,” IEEE Trans. Power Electron., Vol. 29, No. 2, pp. 775-788, Feb. 2014.
[52] K. Filsoof and P. W. Lehn, “A Bidirectional Multiple-Input Multiple-Output Modular Multilevel DC–DC Converter and its Control Design,” IEEE Trans. Power Electron., Vol. 31, No. 4, pp. 2767-2779, April 2016.
[53] O. Ray, A. P. Josyula, S. Mishra, and A. Joshi, “Integrated Dual-Output Converter,” IEEE Trans. Ind. Electron., Vol. 62, No. 1, pp. 371-382, Jan. 2015.
[54] N. Tashakor, E. Farjah, and T. Ghanbari, “A Bidirectional Battery Charger with Modular Integrated Charge Equalization Circuit,” IEEE Trans. Power Electron., Vol. 32, No. 3, pp. 2133-2145, March 2017.
[55] J. M. Blanes, R. Gutiérrez, A. Garrigós, J. L. Lizán, and J. M. Cuadrado, “Electric Vehicle Battery Life Extension Using Ultracapacitors and an FPGA Controlled Interleaved Buck–Boost Converter,” IEEE Trans. Power Electron., Vol. 28, No. 12, pp. 5940-5948, Dec. 2013.
[56] B. Wang, J. Xu, R. J. Wai, and B. Cao, “Adaptive Sliding-Mode with Hysteresis Control Strategy for Simple Multimode Hybrid Energy Storage System in Electric Vehicles,” IEEE Trans. Ind. Electron., Vol. 64, No. 2, pp. 1404-1414, Feb. 2017.
[57] F. Naseri, E. Farjah, and T. Ghanbari, “An Efficient Regenerative Braking System Based on Battery/Supercapacitor for Electric, Hybrid, and Plug-In Hybrid Electric Vehicles with BLDC Motor,” IEEE Trans. Vehicular Technology, Vol. 66, No. 5, pp. 3724-3738, May 2017.
[58] X. Lu, K. Sun, J. M. Guerrero, J. C. Vasquez, and L. Huang, “Double-Quadrant State-of-Charge-Based Droop Control Method for Distributed Energy Storage Systems in Autonomous DC Microgrids,” IEEE Trans. Smart Grid, Vol. 6, No. 1, pp. 147-157, Jan. 2015.
[59] D. Murthy-Bellur and M. K. Kazimierczuk, “Zero-Current-Transition Two-Switch Flyback Pulse-Width Modulated DC-DC Converter,” IET Power Electron., Vol. 4, No. 3, pp. 288-295, March 2011.
[60] F. Forest, E. Laboure, T. Meynard, and M. Arab, “Analytic Design Method Based on Homothetic Shape of Magnetic Cores for High-Frequency Transformers,” IEEE Trans. Power Electron., Vol. 22, No. 5, pp. 2070-2080, Sept. 2007.
[61] P. Zumel, C. Fernandez, M. Sanz, A. Lazaro, and A. Barrado, “Step-By-Step Design of an FPGA-Based Digital Compensator for DC/DC Converters Oriented to an Introductory Course,” IEEE Trans. Edu., Vol. 54, No. 4, pp. 599-609, Nov. 2011.
[62] M. Veerachary and A. R. Saxena, “Design of Robust Digital Stabilizing Controller for Fourth-Order Boost DC–DC Converter: A Quantitative Feedback Theory Approach,” IEEE Trans. Ind. Electron., Vol. 59, No. 2, pp. 952-963, Feb. 2012.
[63] J. Meng, M. Ricco, G. Luo, M. Swierczynski, D. I. Stroe, A. I. Stroe, and R. Teodorescu, “An Overview and Comparison of Online Implementable SOC Estimation Methods for Lithium-Ion Battery,” IEEE Trans. Ind. Appl., Vol. 54, No. 2, pp. 1583-1591, March-April 2018.
[64] M. Partovibakhsh and G. Liu, “An Adaptive Unscented Kalman Filtering Approach for Online Estimation of Model Parameters and State-of-Charge of Lithium-Ion Batteries for Autonomous Mobile Robots,” IEEE Trans. Control Systems Technology, Vol. 2, No. 1, pp. 357-363, Jan. 2015.
[65] A. Abramovitz, C. S. Liao, and K. Smedley, “State-Plane Analysis of Regenerative Snubber for Flyback Converters,” IEEE Trans. Power Electron., Vol. 28, No. 11, pp. 5323-5332, Nov. 2013.