| 研究生: |
葉柏蘨 Yeh, Po-Yao |
|---|---|
| 論文名稱: |
具最大功率擷取功能分散式降壓轉換系統之正前饋控制機制 Positive Feed-Forward Control Scheme for Distributed Buck Conversion System with Maximum Power Harvesting Function |
| 指導教授: |
林瑞禮
Lin, Ray-Lee |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 最大功率擷取 、分散式降壓轉換系統 、正前饋控制 |
| 外文關鍵詞: | Positive Feed-Forward Control, Distributed Buck Conversion System, Maximum Power Harvesting |
| 相關次數: | 點閱:107 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出植基於一種正前饋控制(positive feed-forward control, PFFC)之最大功率獲取的分散式降壓轉換系統。由於各電壓源係非理想電壓源,其輸出電壓準位會隨著輸出電流準位改變而變動。且具不同電器特性之各輸入電壓源亦會有不同的功率額定值。然而,採用傳統負回饋控制機制,功率模組不能限制其之最大輸入功率在相對應電壓源的額定輸出功率值內。因此,所提出之正前饋控制機制能夠使各功率模組具有最大輸入功率獲取功能。並且,將正前饋控制結合平均電流控制(average current-mode control, ACMC)架構能夠確保諸功率模組之穩定度。
最後,由SIMPLIS®電路模擬與實驗結果證明本論文所提出之正前饋控制電
路,確能使功率模組具最大功率獲取功能。
This thesis presents the positive feed-forward control (PFFC) scheme for the distributed buck conversion system with the multiple voltage sources. Since the employed voltage sources are non-ideal, the output voltage level of the individual voltage source varies with the output current of the individual voltage source. Moreover, the employed voltage sources with the different electrical characteristics have different power ratings.
With the use of the conventional negative-feedback control (NFBC) schemes, the maximum input power of the individual power module cannot be limited at the output power rating of the corresponding voltage source. Therefore, the proposed PFFC scheme is used to ensure the maximum power harvesting function for the individual power module. Furthermore, the average current-mode control (ACMC) associated with PFFC is able to ensure the stability for the power converter including the input filter.
Finally, the SIMPLIS® simulation and experimental results show that the paralleled buck power module system achieves the maximum power harvesting function.
[1] W. A. Tabisz, M. M. Jovanovic and F. C. Lee, “Present
and future of distributed power system,” in Proc. IEEE
Appl. Power Electronics Conf. and Expo., Feb.1992, pp.
11-18.
[2] B. Choi, B. H. Cho, R. B. Ridley and F. C. Lee,
“Control strategy for multi-module parallel converter
system,” in Proc. IEEE Power Electronics Specialists
Conf., June 1990, pp. 225-234.
[3] K. Siri, C. Q. Lee and T. F. Wu, “Current distribution
control for parallel connected converters: Part 1,”
IEEE Trans. Aerospace and Electronic Systems, vol. 28,
no. 3, pp. 829-840, July 1992.
[4] K. Siri, C. Q. Lee and T. F. Wu, “Current distribution
control for parallel connected converters: Part 2,”
IEEE Trans. Aerospace and Electronic Systems, vol. 28,
no. 3, pp. 841-850, July 1992.
[5] S. Luo, Z. Ye, R. L. Lin and F. C. Lee, “A
classification and evaluation of paralleling methods
for power supply modules,” in Proc. IEEE Power
Electronics Specialists Conf., vol. 2, June 1999, pp.
901-908.
[6] R. H. Wu, T. Kohama, Y. Kodera and Y. Ninomiya, “Load-
current-sharing control for parallel operation of DC-DC
converters,” in Proc. IEEE Power Electronics
Specialists Conf., June 1993, pp. 101-107.
[7] X. Zhou, P. Xu and F. C. Lee, “A novel current-sharing
control technique for low-voltage high-current voltage
regulator module applications,” IEEE Trans. Power
Electronics, vol. 15, no. 6, pp. 1153-1162, Nov. 2000.
[8] C. S. Lin and C. L. Chen, “Single-wire current-share
paralleling of current-mode-controlled DC power
supplies,” IEEE Trans. Industrial Electronics, vol. 47,
no. 4, pp. 780-786, Aug. 2000.
[9] Y. Qiu and F. C. Lee, “Current-equalization techniques
for electronic ballasts,” Annul seminar proceeding,
Center for Power Electronics Systems (CPES), 2003.
[10] X. Feng, J. Liu and F. C. Lee, “Impedance
specifications for stable DC distributed power systems,”
IEEE Trans. Power Electronics, vol. 17, no. 2, pp. 157-
162, Jan. 2002.
[11] X. Feng, Z. Ye, K. Xing, F. C. Lee and D. Borojevic,
“Individual load impedance specification for a stable
DC distributed power system,” in Proc. IEEE Appl. Power
Electronics Conf. and Expo., March 1999, vol. 2, pp.
923-929.
[12] S. Y. Erich and W. M. Polivka, “Input filter design
criteria for current-programmed regulators,” IEEE
Trans. Power Electronics, vol. 7, no. 1, pp. 143-151,
Jan. 1992.
[13] C. R. Kohut, “Input filter design criteria for
switching regulators using current-mode programming,”
IEEE Trans. Power Electronics, vol. 7, no. 3, pp. 469-
479, July 1992.
[14] L. Dixon, “Average current-mode control of switching
power supplies,” in Unitrode Power Supply Design
Seminar Handbook SEM700, Merrimack, Unitrode rporation,
1990.
[15] L. R. Lewis, B. H. Cho, F. C. Lee and B. A. Carpenter,
“Modeling and analysis of distributed power systems,”
in Proc. IEEE Power Electronics Specialists Conf.,
June 1989, vol. 1, pp. 152-159.
[16] S. S. Kelkar and F. C. Lee, “A fast time domain
digital simulation technique for power converters:
Application to a buck converter with feed-forward
compensation,” IEEE Trans. Aerospace and Electronic
Systems, vol. 1, no. 1, pp. 21-31, Jan. 1986.
[17] J. P. Sjoroos, T. Suntio, J. Kyyra and K.Kostov,
“Dynamic performance of buck converter with input
voltage feed-forward control,” in Proc. IEEE European
Conf., 2005, pp. 1-9.
[18] H. Y. Cho and E. Santi, “Modeling and stability
analysis in multi-converter systems including positive
feed-forward control,” in Proc. IEEE IECON, Nov. 2008,
pp. 839-844.
[19] H. Y. Cho and E. Santi, “Modeling and stability
analysis of cascaded multi-converter systems including
feed-forward and feedback control,” in Proc. IEEE
Industry Applications Society Annual Meeting, 2008,
pp. 1-8.
[20] TDK Corporation, “Ferrite cores for switching power
supplies,” E-Series Datasheet, Feb. 2010.
[21] R. D. Middlebrook and S. Cuk, “A general unified
approach to modeling switching converter power
stages,” in Proc. IEEE Power Electronics Specialists
Conf., 1976, pp. 18-34.
[22] V. Vorperian, “Simplified analysis of PWM converters
using model of PWM switch. Continuous conduction
mode,” IEEE Trans. Aerospace and Electronic Systems,
vol. 26, no. 3, pp. 490-496, May 1990.
[23] B. Choi, B. H. Cho, F. C. Lee and R. B. Ridley, “Three-
loop control for multimodule converter systems,” IEEE
Trans. Power Electronics, vol. 8, no. 4, pp. 466-474,
Oct. 1993.
[24] W. Tang, F. C. Lee and R. B. Ridley, “Small-signal
modeling of average Current-mode control,” IEEE Trans.
Power Electronics, vol. 8, no. 2, pp.112-119, April
1993.
[25] J. Sun and R. M. Bass, “Modeling and practical design
issues for average current control,” in Proc. IEEE
Appl. Power Electronics Conf. and Expo., March 1999,
vol. 2, pp. 980-986.
[26] P. Cooke, “Modeling average current mode control,” in
Proc. IEEE Appl. Power Electronics Conf. and Expo.,
2000, vol. 1, pp. 256-262.
[27] Texas Instruments Corporation, “Average current mode
PWM controller IC,” UC-3886 datasheet, 1998.
[28] A. S. Kislovski, “Small-signal low-frequency analysis
of a buck type PWM conductance controller,” in Proc.
IEEE Power Electronics Specialists Conf., 1990, pp.
88-95.
[29] R. B. Ridley, B. H. Cho and F. C. Lee, “Analysis and
interpretation of loop gain of multiliip-controlled
switching regulators,” IEEE Trans. Power Electronics,
vol. 3, no. 4, pp. 489-498, Oct. 1988.
[30] Ingrid Kohl, “Examples of applications with the pulse
width modulator TL5001,” Application note, May 2002.
[31] International Rectifier Corporation, “Single P-channel
HEXFET power MOSFET,” IRF5305 datasheet, March 2000.
[32] STMicroelectronics Corporation, “Silicon planar
epitaxial NPN transistor for high speed switching
application,” 2N2222A datasheet, 1999.
[33] Fairchild Semiconductor Corporation, “Programmable
shunt regulator,” TL431/TL431A datasheet, 2003.