簡易檢索 / 詳目顯示

研究生: 葉柏蘨
Yeh, Po-Yao
論文名稱: 具最大功率擷取功能分散式降壓轉換系統之正前饋控制機制
Positive Feed-Forward Control Scheme for Distributed Buck Conversion System with Maximum Power Harvesting Function
指導教授: 林瑞禮
Lin, Ray-Lee
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 136
中文關鍵詞: 最大功率擷取分散式降壓轉換系統正前饋控制
外文關鍵詞: Positive Feed-Forward Control, Distributed Buck Conversion System, Maximum Power Harvesting
相關次數: 點閱:107下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出植基於一種正前饋控制(positive feed-forward control, PFFC)之最大功率獲取的分散式降壓轉換系統。由於各電壓源係非理想電壓源,其輸出電壓準位會隨著輸出電流準位改變而變動。且具不同電器特性之各輸入電壓源亦會有不同的功率額定值。然而,採用傳統負回饋控制機制,功率模組不能限制其之最大輸入功率在相對應電壓源的額定輸出功率值內。因此,所提出之正前饋控制機制能夠使各功率模組具有最大輸入功率獲取功能。並且,將正前饋控制結合平均電流控制(average current-mode control, ACMC)架構能夠確保諸功率模組之穩定度。
    最後,由SIMPLIS®電路模擬與實驗結果證明本論文所提出之正前饋控制電
    路,確能使功率模組具最大功率獲取功能。

    This thesis presents the positive feed-forward control (PFFC) scheme for the distributed buck conversion system with the multiple voltage sources. Since the employed voltage sources are non-ideal, the output voltage level of the individual voltage source varies with the output current of the individual voltage source. Moreover, the employed voltage sources with the different electrical characteristics have different power ratings.
    With the use of the conventional negative-feedback control (NFBC) schemes, the maximum input power of the individual power module cannot be limited at the output power rating of the corresponding voltage source. Therefore, the proposed PFFC scheme is used to ensure the maximum power harvesting function for the individual power module. Furthermore, the average current-mode control (ACMC) associated with PFFC is able to ensure the stability for the power converter including the input filter.
    Finally, the SIMPLIS® simulation and experimental results show that the paralleled buck power module system achieves the maximum power harvesting function.

    CHAPTER 1. INTRODUCTION 1.1. Background............................................1 1.2. Motivation............................................6 1.3. Thesis Outline........................................7 CHAPTER 2. POSITIVE FEED-FORWARD CONTROL TECHNIQUES FOR DC DISTRIBUTED POWER SYSTEM 2.1. Introduction..........................................8 2.2. Review of Control Techniques.........................10 2.2.1. Negative Feedback Control Techniques..........12 2.2.2. Negative Feed-forward Control with Negative Feedback Control Techniques..........18 2.2.3. Positive Feed-forward Control with Negative Feedback Control Technique....................24 2.3. Proposed Positive Feed-Forward Control for DC DSP...............................................26 2.3.1. Average Current-mode Control Associated with PFFC Loop for DC DSP..........................27 2.3.2. DC Analysis of PFFC...........................29 2.4. Summary .............................................30 CHAPTER 3. ANALYSIS AND DESIGN OF POSITIVE FEED-FORWARD CONTROL BASED POWER SYSTEM WITH TWO AVERAGE CURRENT-MODE BUCK CONVERTERS IN PARALLEL 3.1. Introduction.........................................31 3.2. Centralized Voltage-loop Based Power System with Two Average Current-mode Buck Converters in Parallel.....32 3.2.1. Inductor Design...............................35 3.2.2. Open-loop Analysis............................39 3.2.3. Current-loop Compensator Design...............42 3.2.4. Voltage-loop Compensator Design...............53 3.2.5. Analysis and Design of Gate Driver Circuit for P-MOSFET Switch...............................60 3.2.6. Analysis of Interaction between ACMC Buck Converter and Input .Filter...................65 3.3. Positive Feed-Forward Control for Centralized Voltage- loop Based Power System with Two Average Current-mode Buck Converters in Parallel..........................70 3.3.1. Design of Positive Feed-Forward Control Circuit...............................71 3.3.2. Analysis of Interaction between ACMC+PFFC Buck Converter and Input Filter....................79 3.4. Summary..............................................80 CHAPTER 4. SIMULATION AND EXPERIMENTAL RESULTS 4.1. Introduction.........................................81 4.2. Measured V-I Curves of EmployedVoltage Sources..............................82 4.3. Simulation of Distributed Buck Conversion System with PFFC.................................................83 4.4. Implementation of Distributed Buck Conversion System with PFFC............................................89 4.5. Experimental Results.................................90 4.6. Summary.............................................100 CHAPTER 5. CONCLUSION AND FUTURE WORKS...................101 REFERENCES...............................................103 APPENDIX A. MATHCAD DESIGN PROGRAMS......................107 APPENDIX B. SIMPLIS® SIMULATION SCHEMATICS...............116 APPENDIX C. IMPLEMENTATION SCHEMATICS....................129 APPENDIX D. PHOTO OF PROTOTYPE CIRCUIT OF PARALLELED ACMC+PFFC BUCK CONVERTER SYSTEM..............132 APPENDIX E. LOAD TRANSIENT RESPONSE OF PROTOTYPE CIRCUIT............................133 APPENDIX F. CONVERSION-EFFICIENCY RESULTS OF PROTOTYPE CIRCUIT................... ........135 VITA.....................................................136

    [1] W. A. Tabisz, M. M. Jovanovic and F. C. Lee, “Present
    and future of distributed power system,” in Proc. IEEE
    Appl. Power Electronics Conf. and Expo., Feb.1992, pp.
    11-18.
    [2] B. Choi, B. H. Cho, R. B. Ridley and F. C. Lee,
    “Control strategy for multi-module parallel converter
    system,” in Proc. IEEE Power Electronics Specialists
    Conf., June 1990, pp. 225-234.
    [3] K. Siri, C. Q. Lee and T. F. Wu, “Current distribution
    control for parallel connected converters: Part 1,”
    IEEE Trans. Aerospace and Electronic Systems, vol. 28,
    no. 3, pp. 829-840, July 1992.
    [4] K. Siri, C. Q. Lee and T. F. Wu, “Current distribution
    control for parallel connected converters: Part 2,”
    IEEE Trans. Aerospace and Electronic Systems, vol. 28,
    no. 3, pp. 841-850, July 1992.
    [5] S. Luo, Z. Ye, R. L. Lin and F. C. Lee, “A
    classification and evaluation of paralleling methods
    for power supply modules,” in Proc. IEEE Power
    Electronics Specialists Conf., vol. 2, June 1999, pp.
    901-908.
    [6] R. H. Wu, T. Kohama, Y. Kodera and Y. Ninomiya, “Load-
    current-sharing control for parallel operation of DC-DC
    converters,” in Proc. IEEE Power Electronics
    Specialists Conf., June 1993, pp. 101-107.
    [7] X. Zhou, P. Xu and F. C. Lee, “A novel current-sharing
    control technique for low-voltage high-current voltage
    regulator module applications,” IEEE Trans. Power
    Electronics, vol. 15, no. 6, pp. 1153-1162, Nov. 2000.
    [8] C. S. Lin and C. L. Chen, “Single-wire current-share
    paralleling of current-mode-controlled DC power
    supplies,” IEEE Trans. Industrial Electronics, vol. 47,
    no. 4, pp. 780-786, Aug. 2000.
    [9] Y. Qiu and F. C. Lee, “Current-equalization techniques
    for electronic ballasts,” Annul seminar proceeding,
    Center for Power Electronics Systems (CPES), 2003.
    [10] X. Feng, J. Liu and F. C. Lee, “Impedance
    specifications for stable DC distributed power systems,”
    IEEE Trans. Power Electronics, vol. 17, no. 2, pp. 157-
    162, Jan. 2002.
    [11] X. Feng, Z. Ye, K. Xing, F. C. Lee and D. Borojevic,
    “Individual load impedance specification for a stable
    DC distributed power system,” in Proc. IEEE Appl. Power
    Electronics Conf. and Expo., March 1999, vol. 2, pp.
    923-929.
    [12] S. Y. Erich and W. M. Polivka, “Input filter design
    criteria for current-programmed regulators,” IEEE
    Trans. Power Electronics, vol. 7, no. 1, pp. 143-151,
    Jan. 1992.
    [13] C. R. Kohut, “Input filter design criteria for
    switching regulators using current-mode programming,”
    IEEE Trans. Power Electronics, vol. 7, no. 3, pp. 469-
    479, July 1992.
    [14] L. Dixon, “Average current-mode control of switching
    power supplies,” in Unitrode Power Supply Design
    Seminar Handbook SEM700, Merrimack, Unitrode rporation,
    1990.
    [15] L. R. Lewis, B. H. Cho, F. C. Lee and B. A. Carpenter,
    “Modeling and analysis of distributed power systems,”
    in Proc. IEEE Power Electronics Specialists Conf.,
    June 1989, vol. 1, pp. 152-159.
    [16] S. S. Kelkar and F. C. Lee, “A fast time domain
    digital simulation technique for power converters:
    Application to a buck converter with feed-forward
    compensation,” IEEE Trans. Aerospace and Electronic
    Systems, vol. 1, no. 1, pp. 21-31, Jan. 1986.
    [17] J. P. Sjoroos, T. Suntio, J. Kyyra and K.Kostov,
    “Dynamic performance of buck converter with input
    voltage feed-forward control,” in Proc. IEEE European
    Conf., 2005, pp. 1-9.
    [18] H. Y. Cho and E. Santi, “Modeling and stability
    analysis in multi-converter systems including positive
    feed-forward control,” in Proc. IEEE IECON, Nov. 2008,
    pp. 839-844.
    [19] H. Y. Cho and E. Santi, “Modeling and stability
    analysis of cascaded multi-converter systems including
    feed-forward and feedback control,” in Proc. IEEE
    Industry Applications Society Annual Meeting, 2008,
    pp. 1-8.
    [20] TDK Corporation, “Ferrite cores for switching power
    supplies,” E-Series Datasheet, Feb. 2010.
    [21] R. D. Middlebrook and S. Cuk, “A general unified
    approach to modeling switching converter power
    stages,” in Proc. IEEE Power Electronics Specialists
    Conf., 1976, pp. 18-34.
    [22] V. Vorperian, “Simplified analysis of PWM converters
    using model of PWM switch. Continuous conduction
    mode,” IEEE Trans. Aerospace and Electronic Systems,
    vol. 26, no. 3, pp. 490-496, May 1990.
    [23] B. Choi, B. H. Cho, F. C. Lee and R. B. Ridley, “Three-
    loop control for multimodule converter systems,” IEEE
    Trans. Power Electronics, vol. 8, no. 4, pp. 466-474,
    Oct. 1993.
    [24] W. Tang, F. C. Lee and R. B. Ridley, “Small-signal
    modeling of average Current-mode control,” IEEE Trans.
    Power Electronics, vol. 8, no. 2, pp.112-119, April
    1993.
    [25] J. Sun and R. M. Bass, “Modeling and practical design
    issues for average current control,” in Proc. IEEE
    Appl. Power Electronics Conf. and Expo., March 1999,
    vol. 2, pp. 980-986.
    [26] P. Cooke, “Modeling average current mode control,” in
    Proc. IEEE Appl. Power Electronics Conf. and Expo.,
    2000, vol. 1, pp. 256-262.
    [27] Texas Instruments Corporation, “Average current mode
    PWM controller IC,” UC-3886 datasheet, 1998.
    [28] A. S. Kislovski, “Small-signal low-frequency analysis
    of a buck type PWM conductance controller,” in Proc.
    IEEE Power Electronics Specialists Conf., 1990, pp.
    88-95.
    [29] R. B. Ridley, B. H. Cho and F. C. Lee, “Analysis and
    interpretation of loop gain of multiliip-controlled
    switching regulators,” IEEE Trans. Power Electronics,
    vol. 3, no. 4, pp. 489-498, Oct. 1988.
    [30] Ingrid Kohl, “Examples of applications with the pulse
    width modulator TL5001,” Application note, May 2002.
    [31] International Rectifier Corporation, “Single P-channel
    HEXFET power MOSFET,” IRF5305 datasheet, March 2000.
    [32] STMicroelectronics Corporation, “Silicon planar
    epitaxial NPN transistor for high speed switching
    application,” 2N2222A datasheet, 1999.
    [33] Fairchild Semiconductor Corporation, “Programmable
    shunt regulator,” TL431/TL431A datasheet, 2003.

    下載圖示 校內:2015-06-22公開
    校外:2015-06-22公開
    QR CODE